
COMP 322 Spring 2013

Lab 3: Data Race Detection and Repair
Instructor: Vivek Sarkar

Resource Summary

Course wiki: https://wiki.rice.edu/confluence/display/PARPROG/COMP322

Staff Email: comp322-staff@mailman.rice.edu

Coursera Login: visit http://rice.coursera.org and select “Fundamentals of Parallel Programming”

Clear Login: ssh your-netid@ssh.clear.rice.edu and then login with your password

NOTE: As with Labs 1 and 2, you have the option of doing today’s lab on your laptop computer or on a
lab computer. If you use your laptop, the setup should work smoothly if it runs Mac OS or Linux. For
Windows, you should ensure that DrHJ is launched on a standard Oracle JDK. If you’re having problems
using a Windows machine for your work, we recommend that you use a lab machine instead. You should
have 24-hour access to the lab with your Rice ID card.

Finally, all commands below are CaSe-SeNsItIvE. For example, be sure to use “S13” instead of “s13”.

1 Important Tips when using DrHJ

1. If you use the Interactions Pane in DrHJ, it is very important that you reset the Interactions Pane
after each run of a program. This can be done by clicking on the “Reset” button on the top, just to
the right of “Compile”. Failure to do so may lead to unpredictable results for the second run of your
program, because it may be impacted by updates to static fields that were made in the first run.

In particular, if you attempt to run a program with data race detection support enabled multiple times
in the same Interactions Pane session, you will see the following message for each run after the first:

Error: Race Detection already ran in this instance of the HJ Runtime

The only fix for this problem is to reset the Interactions Pane before each run.

2. Datarace detection support in DrHJ only works if your entire program is contained in a single .hj file.
If your program contains multiple .hj files, you will need to use HJ’s command-line interface to turn
on datarace detection. See optional note below for advanced users

3. When selecting compiler options for DrHJ, make sure to choose at most one of the following compiler
options at a time — “Show Abstract Execution Metrics” or “Show Race Detection Warnings”. Fortu-
nately, the Compiler Options pane in DrHJ’s Preferences does not allow both options to be selected
simultaneously.

4. If the source location of a compiler error message appears unclear in the “Compiler Output” pane,
click on “Console Output” and you may see a precise location in line:column format. For example
10:20 refers to column 20 in line 10.

Optional note for advanced users: If you prefer to use a command-line interface instead of DrHJ to
compile and run HJ programs, you can down load an HJ installation from the “HJ Download and Setup”
page listed above by searching for “Download the zip file containing the HJ package” and then following the
subsequent instructions. The command-line interface only works on Unix-based systems (e.g., Linux, Mac
OS), and not on Windows. In contrast, DrHJ runs on both Unix-based systems and Windows systems. We
will introduce command-line interfaces for HJ to all students later in the semester.

1 of 3

https://wiki.rice.edu/confluence/display/PARPROG/COMP322
mailto:comp322-staff@mailman.rice.edu
http://rice.coursera.org


COMP 322
Spring 2013

Lab 3: Data Race Detection and Repair

2 Example HJ Program for Data Race Detection

The HJ compiler supports a data race detection option to enable automatic instrumentation of the HJ
program to check for data races at runtime. This capability can be enabled by selecting the “Show Race
Detection Warnings” option in DrHJ’s Compiler Option preferences (see Figure 1), or (if you’re using the
command line) by typing the following command: hjc -racedet RacyArraySum1. After this compilation, the
HJ program can be launched as usual. Instead of a normal parallel execution, the instrumented version
runs on a single processor core (single worker) and reasons about all potential interfering accesses that are
candidates for data races according to the parallelism in the input program. If a race is found, a pair of
interfering accesses is printed with source code locations for the accesses.

1. Download the RacyArraySum1.hj file from the Code Examples column for Lab 3 in the course web
page.

2. Compile this HJ program with the appropriate option for enabling datarace detection, as described
above.

3. Now, run the program, and observe from the output the exact locations in the program where the
data race exists. Insert a finish to fix the data race, and re-run with data race detection enabled to
check for additional races until no more races are encountered in your testing. You can consult the
ArraySum1.hj example from Lab 2 if you would like to remind yourself where the finish was originally
placed.

Figure 1: Selection of “Show Abstract Execution Metrics” in DrHJ’s Compiler Option preferences

3 Lab 3 Assignment

1. As before, create a text file named lab 3 written.txt in the lab 3 directory. It will also help you to
look at the questions in the Lab 3 quiz in Coursera before you start the lab assignment.

2 of 3



COMP 322
Spring 2013

Lab 3: Data Race Detection and Repair

2. Check each parallel HJ program that you submitted in Lab 1 and Lab 2 to see if it exhibits a data race
for the default input. (You can browse https://svn.rice.edu/r/comp322/turnin/S13/your-netid
to locate your past submissions.) Write your answer in lab 3 written.txt.

3. Repeat steps 4–9 for each of the remaining files in the Code Examples column for Lab 3 in the course
web page.

4. Download the .hj file.

5. Compile the program with datarace detection enabled.

6. Run the program, and observe the source code location for conflicting accesses.

7. Edit the program to fix the data race bug (if any) and get the correct output. (You can make a copy
of the program and comment out all occurrences of “async” to obtain a correct sequential program,
if you’d like to use it as baseline to understand what the correct version of the parallel program
is supposed to compute.) You may edit the program by inserting finish statements, moving async
statements, or expanding a single-dimensional array to a multi-dimensional array.

8. Repeat steps 5, 6, 7 for the current parallel program until no data race is reported.

9. Create an entry for the .hj program in lab 3 written.txt. The entry should summarize in 2-3
sentences how much parallelism had to be given up to guarantee data race freedom, and whether the
final program has no parallelism i.e., is it equivalent to a sequential program?

4 Turning in your quiz and lab work

As in previous labs, you will need to complete a quiz on Coursera and turn in your work before leaving, as
follows:

1. Visit rice.coursera.org, select ”Fundamentals of Parallel Programming” course, and take the Lab 3
quiz.

2. Check that all the work for today’s lab is in the lab 3 directory. If not, make a copy of any missing
files/folders there. It’s fine if you include more rather than fewer files — don’t worry about cleaning
up intermediate/temporary files.

3. Before you leave, create a zip file of your work by changing to the parent directory for lab 3/ and
issuing the following command, “zip -r lab 3.zip lab 3”.

4. Use the turn-in script to submit the contents of the lab 3.zip file as a new lab 3 directory in your
turnin repository as explained in Lab 1. You can always examine the most recent contents of your svn
repository by visiting https://svn.rice.edu/r/comp322/turnin/S13/your-netid.

3 of 3

http://rice.coursera.org

	Important Tips when using DrHJ
	Example HJ Program for Data Race Detection
	Lab 3 Assignment
	Turning in your quiz and lab work

