
COMP 322 Spring 2013

Lab 6: Barriers, Data-Driven Tasks
Instructor: Vivek Sarkar

Resource Summary

Course wiki: https://wiki.rice.edu/confluence/display/PARPROG/COMP322

Staff Email: comp322-staff@mailman.rice.edu

Coursera Login: visit http://rice.coursera.org and log in via Shibboleth

Clear Login: ssh your-netid@ssh.clear.rice.edu and then login with your password

Sugar Login: ssh your-netid@sugar.rice.edu and then login with your password

Linux Tutorial visit http://www.rcsg.rice.edu/tutorials/

IMPORTANT: please refer to the tutorial on Linux and SUGAR from Lab 5, before staring this lab. Also,
if you and others experience long waiting times with the “qsub” command, please ask the TAs to announce
to everyone that they should use ppn=4 instead of ppn=8 in their qsub command (to request 4 cores instead
of 8 cores).

As in past labs, create a text file named lab 6 written.txt in the lab 6 directory, and enter your timings
and observations there.

1 One-Dimensional Iterative Averaging Example Revisited with
Barriers

1. Download the OneDimAveraging.hj program from Lab 5 by typing the wget command,
wget http://www.cs.rice.edu/~vs3/downloads/OneDimAveraging.hj.

2. The code in OneDimAveraging.hj performs the iterative averaging computation discussed in the lec-
tures. This code performs a sequential version of the computation in method runSeq() and a parallel
chunked for-finish-forasync–for version in method runChunkedForkJoin.

3. Your task is to create a more efficient SPMD version of runChunkedForkJoin() by using a forall

loop with a barrier (next) operation instead. Call this version runSPMD(). See slide 8 in Lecture 13 for
the general approach.

4. The input arguments for the main method in this program are as follows:

(a) tasks = number of chunks to be used for chunked parallelism. The default value for tasks is
Runtime.getNumOfWorkers(), which is the number of workers w specified with the “-places
1 : w” option (default is w = 8 on SUGAR).

(b) n = problem size. Iterative averaging is performed on a one-dimensional array of size (n+2) with
elements 0 and n+1 initialized to 0 and 1 respectively. The final value expected for each element
i is i/(n + 1). The default value for n is 1,000,000.

(c) iterations = number of iterations needed for convergence. The default value is 2,000. This
default was set for expediency. For this synthetic problem, you typically many more iterations to
guarantee convergence.

(d) rounds = number of repetitions for the entire computation. As discussed earlier, these repetitions
are needed for timing accuracy. The default value is 3. For 3 repetitions, a reasonable approach
is to just report the minimum time observed.

1 of 4

https://wiki.rice.edu/confluence/display/PARPROG/COMP322
mailto:comp322-staff@mailman.rice.edu
http://rice.coursera.org
http://www.rcsg.rice.edu/tutorials/
http://www.cs.rice.edu/~vs3/downloads/OneDimAveraging.hj

COMP 322
Spring 2013

Lab 6: Barriers, Data-Driven Tasks

5. You should run your program on SUGAR, to evaluate the parallelization. As before, you can compile
the program as follows:

hjc OneDimAveraging.hj

To run the program using 8 cores, use the following command on a compute node:

hj -places 1:8 OneDimAveraging

6. Record in lab 5 written.txt the best sequential and SPMD-parallel times observed for the default
inputs (using 8 cores), and then compute their ratio as the speedup. Compare your results for run-
SPMD() with the results that you obtained in Lab 5 for runChunkedForkJoin().

2 Data-Driven Tasks

Download the following files to prepare for this section of the lab:

1. wget http://www.cs.rice.edu/~vs3/downloads/MatrixEval.hj

2. wget http://www.cs.rice.edu/~vs3/downloads/test.txt

3. wget http://www.cs.rice.edu/~vs3/downloads/test0.txt

2.1 Matrix Expression Language

We have provided a sequential program, MatrixEval.hj, to evaluate matrix expressions consisting of the
following terms and operators:

• The only leaf terms supported are identifiers which can be of two forms:

Identity Matrix: An identifier of the form m〈num1〉 represents a square identity matrix of size
〈num1〉×〈num1〉. For example, m100 represents the 100 × 100 identity matrix. (The expres-
sion language has no variable declarations, so there’s no significance to the name m other than
the fact that it denotes a matrix.)

Random Matrix: An identifier of the form m〈num1〉x〈num2〉s〈seed〉 represents a random matrix of
size 〈num1〉×〈num2〉, for which the elements are generated using java.util.Random starting with
an integer (long) seed, and calling nextInt() to generate successive elements of the matrix. For
example, m100x200s5 represents the 100 × 200 random matrix generated using 5 as the initial
seed.

• The + operator represents matrix addition. An exception is thrown if the matrices don’t have the
same dimension sizes i.e., if they are not conformable. Otherwise, the matrix sum is returned.

• The − operator represents matrix subtraction. An exception is thrown if the matrices don’t have the
same dimension sizes i.e., if they are not conformable. Otherwise, the matrix difference is returned.

• The ∗ operator represents matrix multiplication. An exception is thrown if the number of columns in
the first matrix operand does not equal the number of rows in the second matrix operand i.e., if they
are not compatible for matrix multiplication. Otherwise, the matrix product is returned.

• Usual precedence and evaluation rules apply for the above operators, and parentheses can also be used.

As an example, “m3 + m3 * m3”, will be evaluated as follows:1 0 0
0 1 0
0 0 1

 +

1 0 0
0 1 0
0 0 1

×
1 0 0

0 1 0
0 0 1

 =

2 0 0
0 2 0
0 0 2

2 of 4

http://www.cs.rice.edu/~vs3/downloads/MatrixEval.hj
http://www.cs.rice.edu/~vs3/downloads/test.txt
http://www.cs.rice.edu/~vs3/downloads/test0.txt

COMP 322
Spring 2013

Lab 6: Barriers, Data-Driven Tasks

2.2 Recap of Data-Driven Tasks

Data-driven tasks were covered in Lecture 13. To use this feature, be sure to include the following import
statement at the start of your program: “import hj.lang.DataDrivenFuture;”

This extension is enabled by adding an await clause to the async statement as follows:

async await (DDF a, DDF b, · · ·) 〈 statement 〉

Each of DDF a, DDF b, · · · is an instance of the standard DataDrivenFuture class in HJ. A DDF acts as a
container for a single-assignment value, like regular future objects. However, unlike future objects, DDF’s
can be used in an await clause, and any async task can be a potential producer for a DDF (though only
one task can be the actual producer at runtime because of the single-assignment property).

The example HJ code fragment in Figure 1 shows five logically parallel tasks and how they are synchronized
through DDFs. Initially, two DDFs are created as containers for data items left and right. Then a finish

is created with five async tasks. The tasks, leftReader and rightReader, include left or right in their
await clauses respectively. The fifth task, bothReader, includes both both left and right in its await

clause. Regardless of the underlying scheduler, the first two asyncs are guaranteed to execute before the
fifth async.

DataDrivenFuture left = new DataDrivenFuture();

DataDrivenFuture right = new DataDrivenFuture();

finish { // begin parallel region

async left.put(leftBuilder()); // Task1
async right.put(rightBuilder()); // Task2
async await (left) leftReader(left.get()); // Task3
async await (right) rightReader(right.get());// Task4
async await (left, right) bothReader(left.get(), right.get()); //Task5

} // end parallel region

Figure 1: Example Habanero Java code fragment with Data-Driven Futures.

2.3 Parallelizing MatrixEval using Data-Driven Tasks

The code in MatrixEval.hj parses the input expression, and then calls the eval() methods to evaluate
the expression. The major potential for parallelism is in the eval() method in class Binary, shown in
Listing 1. Given the semantics of expression evaluation, the calls to lft.eval() and rgt.eval() can
execute in parallel.

Your assignment today is to use the async await feature in HJ to parallelize the evaluation of these two
calls using data-driven tasks (DDTs) and data-driven futures (DDFs) (Lecture 13). HJ’s DataDrivenFuture
class now accepts type parameters, so you can use the DataDrivenFuture<MatrixEval.Matrix> type for
DDFs in this assignment.

WARNINGS:

1. You may need to modify method call interfaces e.g., adding a DDF parameter to eval(), to complete
this assignment.

2. Be sure to add “break;” statements in “switch” statements if needed.

You should run your program on SUGAR, to evaluate the parallelization. As before, you can compile the
program as follows, after repeating the setup from Lab 4:

hjc MatrixEval.hj

3 of 4

COMP 322
Spring 2013

Lab 6: Barriers, Data-Driven Tasks

To run the program, use the following command on a compute node (obtained using the “qsub -I . . .”
command discussed in Lab 4):

hj -places 1:8 MatrixEval test.txt

where test1.txt is a text file containing the input expression. What speedups do you see with paralleliza-
tion? Enter your results in lab 6 written.txt.

You’re welcome to test your code with other input expressions, both for correctness (with small matrices)
and for performance (with larger matrices). There is a PrintMatrix() method included that you may choose
to use when debugging your code with small inputs such as test0.txt.

1 public MatrixEval . Matrix eva l () {
2 switch (opr) {
3 case Lex i ca l . p lus :
4 return MatrixEval . matrixAdd (l f t . eva l () , r g t . eva l ()) ;
5 case Lex i ca l . minus :
6 return MatrixEval . matrixMinus (l f t . eva l () , r g t . eva l ()) ;
7 case Lex i ca l . t imes :
8 return MatrixEval . matr ixMult ip ly (l f t . eva l () , r g t . eva l ()) ;
9 default :

10 e r r o r (”Unhandled binary operator ”) ;
11 }
12 return null ;
13 }

Listing 1: Sequential implementation of eval() method in class Binary

3 Turning in your lab work and quiz

As in previous labs, you will need to complete a quiz on Coursera and turn in your work before leaving, as
follows:

1. Visit rice.coursera.org, select ”Fundamentals of Parallel Programming” course, and take the Lab 6
quiz.

2. Check that all the work for today’s lab is in the lab 6 directory. If not, make a copy of any missing
files/folders there. It’s fine if you include more rather than fewer files — don’t worry about cleaning
up intermediate/temporary files.

3. Before you leave, create a zip file of your work by changing to the parent directory for lab 6/ and
issuing the following command, “zip -r lab 6.zip lab 6”.

4. Use the turn-in script to submit the contents of the lab 6.zip file as a new lab 6 directory in your
turnin repository as explained in Lab 1. You can always examine the most recent contents of your svn
repository by visiting https://svn.rice.edu/r/comp322/turnin/S13/your-netid.

4 of 4

http://rice.coursera.org

	One-Dimensional Iterative Averaging Example Revisited with Barriers
	Data-Driven Tasks
	Matrix Expression Language
	Recap of Data-Driven Tasks
	Parallelizing MatrixEval using Data-Driven Tasks

	Turning in your lab work and quiz

