COMP 322: Fundamentals of
Parallel Programming

Lecture 12: Barrier synchronization in forall
loops

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

COMP 322 Lecture 12 6 February 2013 %ﬁ

Solution to Worksheet #11: One-dimensional
Iterative Averaging Example

1) Assuming n=9 and the input array below, perform one iteration of the
iterative averaging example by only filling in the blanks for odd values
of j in the myNew([] array. Recall that the computation is “myNewf[j] =
(myVal[j-1] + myVal[j+1])/2.0;”

index,j | O 1 2 3 4 5 6 7/ 8 9 10

myVal | O 0 |0.2 O {[0.4] O |[0.6] O |[0.8] O 1

myNew | 0 | 0.110.2|0.3/0.410.5/0.60.710.8(0.9 1

2) Will the contents of myVal[] and myNew[] change in further
iterations, after myNew above in 1) becomes myVal[] in the next
iteration?

No, this represents the converged value (equilibrium/fixpoint).

2 COMP 322, Spring 2013 (V.Sarkar) %

HJ code for One-Dimensional Iterative Averaging
using nested for-finish-forasync structure (Recap)

for (point [i1ter] : [0:m-1]) {
// Compute MyNew as function of input array Myval
finish forasync (point [j] : [1:n]) { // Create n tasks

1.
2
3
4. myNew[j] = (myval[j-1] + myval[j+1])/2.0;
5 } // finish forasync

6. temp=myval; myval=myNew; myNew=temp;// Swap myval & myNew;
7/ // myNew becomes input array for next iteration

8.

 // for

Question: How many async tasks does this program create as a
Junction of m and n?

4)
Answer: m*n. Can we do better with chunking?
g J/

3 COMP 322, Spring 2013 (V.Sarkar))

Example: HJ code for One-Dimensional Iterative Averaging
with chunked for-finish-forasync-for structure (Recap)

1. int nc

Runtime.getNumofworkers();

2. for (point [iter] : [0:m-1]) {

3. // Compute MyNew as function of input array Myval

4 finish forasync (point [jj] : [0:nc-1]) {

5 for(point [j] : getChunk([1l:n],nc,3j3)) {

6 myNew[j] = (myval[j-1] + myval[j+1])/2.0;

7. } // finish forasync

8 temp=myval; myval=myNew; myNew=temp;// Swap myval & myNew;
9 // myNew becomes 1input array for next iteration

10.} // for

-
Question: How many async tasks does this program create as a
function of m, n, and nc?

Answer: m*nc. But we can do even better with “forall” loops and
“barrier” synchronization.

4 COMP 322, Spring 2013 (V.Sarkar) %ﬁ

Outline of Today’s Lecture

e Barrier Synchronization in Forall Loops

Acknowledgments

e COMP 322 Module 1 handout, Sections 10.1, 10.2, 10.4.

S COMP 322, Spring 2013 (V.Sarkar) 2

HJ’s forall statement = finish + forasync
+ barriers

Goal 1 (minor): replace common finish-forasync idiom by forall
e.d., replace

finish forasync (point [I,J] : [0:N-1,0:N-1])
for (point[K] : [0:N-1])
C[I][J] += A[l][K] * B[K][J];
by
forall (point [I,J] : [0:N-1,0:N-1])
for (point[K] : [0:N-1])
C[I][J] += A[l][K] * B[K][J];

Goal 2 (major): Also support “barrier” synchronization

« Caveat: forall is only supported on the work-sharing runtime
because of barrier synchronization

6 COMP 322, Spring 2013 (V.Sarkar) A

Hello-Goodbye Forall Example (Listing 33)

forall (point[i] : [0:m-1]) {
int sq = 1%1;
System.out.printin(“Hello from task with square = “ + sq);

System.out.println(“Goodbye from task with square = “ + sq);

e Sample output form =4
Hello from task with square =0
Hello from task with square = 1
Goodbye from task with square = 0
Hello from task with square = 4
Goodbye from task with square = 4
Goodbye from task with square =1
Hello from task with square =9
Goodbye from task with square =9

T E
7 COMP 322, Spring 2013 (V.Sarkar) Z\x‘

Hello-Goodbye Forall Example (contd)

forall (point[i] : [0:m-1]) {
int sq = 1%1;

System.out.printin(“Hello from task with square = “ + sq);

System.out.println(“Goodbye from task with square = “ + sq);
¥

 Question: how can we transform this code so as to ensure that all tasks say
hello before any tasks say goodbye?

e Statements in red below will need to be moved to solve this problem

Hello from task with square =0
Hello from task with square =1
Goodbye from task with square =0
Hello from task with square =4
Goodbye from task with square =4
Goodbye from task with square =1
Hello from task with square =9
Goodbye from task with square =9

8 COMP 322, Spring 2013 (V.Sarkar) 2

vl . W N B

0O N O Ui AW N R

Hello-Goodbye Forall Example (contd)

. forall (point[i] : [0:m-1]1) {

int sq = 1%1;
System.out.println(“Hello from task with square = “ + sq);

System.out.println(“Goodbye from task with square = “ + sq);

.}

Question: how can we transform this code so as to ensure that all tasks
say hello before any tasks say goodbye?

Approach 1: Replace the forall loop by two forall loops, one for the
hello’s and one for the goodbye’s

—Problem: Need to communicate local sq values from one forall to the next

.}

. // APPROACH 1
. forall (point[i] : [0:m-1]) {
int (59)= 1%1;
System.out.println(“Hello from task with square = “ + sq);
. forall (point[i] : [0:m-1]) {
System.out.println(“Goodbye from task with square = *“ +;

.}

COMP 322, Spring 2013 (V.Sarkar) D

Hello-Goodbye Forall Example (contd)

e Question: how can we transform this code so as to ensure that all
tasks say hello before any tasks say goodbye?

e Approach 2: insert a “barrier” between the hello’s and goodbye’s
—“next” statement in HJ’s forall loops

1. // APPROACH 2

2. forall (point[i] : [0:m-1]) {

3. 1int sq = 1*1; } Phase O
4. System.out.println(“Hello from task with square = “ + sq);

5. next; // Barrier

6. System.out.printlin(“Goodbye from task with square = “ + sq);} Phase 1
7.}

e next =» each forall iteration suspends at next until all iterations arrive
(complete previous phase), after which the phase can be advanced

—If a forall iteration terminates before executing “next”, then the other iterations do
not wait for it

— Scope of next is the closest enclosing forall statement
— Special case of “phaser” construct (will be covered later in class)

10 COMP 322, Spring 2013 (V.Sarkar) D

Impact of barrier on scheduling forall

iterations
Barrier Region
— 'd’e i=0
SIG idle i1
Forall _ ' =
iterations i=2
— i=3
Phase O Phase 1 time |
A1 A As %4
Modeling a next K& ;
operation in the signal edges /
computation graph next

wait edges LAl/‘{ \)\3\’;\4
S S35

11 COMP 322, Spring 2013 (V.Sarkar) %

Observation 1: Scope of synchronization for
“next” is closest enclosing forall statement

1.forall (point [i] : [0:m-1]) {
System.out.println(“Starting forall iteration ” + i);
next; // Acts as barrier for forall-i
forall (point [j] : [O0:n-1]) {
System.out.println(“Hello from task (” + i + “,”
+3 4T

next; // Acts as barrier for forall-j

© No o kD

System.out.println(“Goodbye from task (“ + i1 + “,”
9. +3+)");

10. } // forall-j

11. next; // Acts as barrier for forall-i

12. System.out.println(“Ending forall iteration ” + i);
13.} // forall-i

12 COMP 322, Spring 2013 (V.Sarkar) 2

Observation 2: If a forall iteration terminates before
“next”, then other iterations do not wait for it

forall (point[i] : [O:m-1]) {
for (point[j] : [0:i]) {
// Forall iteration i is executing phase j
System.out.println("(" + i + "," + 3 + ")");

next;

N 6o o W=

}

Outer forall-i loop has m iterations, 0...m-1

* Inner sequential j loop has i+1 iterations, 0...i
e Line 4 prints (task,phase) = (i, j) before performing a next operation.

e lteration i = 0 of the forall-i loop prints (0, 0), performs a next, and then
terminates. Iteration i = 1 of the forall-i loop prints (1,0), performs a next,
prints (1,1), performs a next, and then terminates. And so on.

13 COMP 322, Spring 2013 (V.Sarkar) p/gx\i

lllustration of previous example

« TIteration i=0 of the forall-i L

I
(0,00 (1,00 (20 (3,0
|

loop prints (O, O) in Phase O, | | |

performs a next, and then o

ends Phase 1 by terminating. | " % %"

« Iteration i=1 of the forall-i L 2 62
loop prints (1,0) in Phase O, end —— next —nest
performs a next, prints (1,1) L e
in Phase 1, performs a next, ondl - nint
and then ends Phase 2 by i
terminating. end

« And so on until iteration i=8
ends an empty Phase 8 by

i=4

terminating

i=0...7 are forall iterations

(i,j) = printin output

Interesting figure. Try out
another one in Worksheet 12!

next = barrier operation

end = termination of a forall iteration

i=5
(5|,0)
ot
(5|,1)
next
(5|,2)
b
(5|>,3)
next
(5'|>,4)
nex
(5:),5)

i=6

i=7

Phase O

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Phase 6

Phase 7

Phase 8

14 COMP 322, Spring 2013 (V.Sarkar)

/&%

Observation 3: Different forall iterations may perform “next”
at different program points (barrier matching problem)

forall (point[i] : [O0:m-1]) {
if (1 $2==1) {// i is odd
oddPhase0(1i);

next;

1.

2.

3

4

5. oddPhasel (i) ;
6 } else { // i is even
7 evenPhaseO(1);

8 next;

9 evenPhasel(1i);

10. } // if-else

11. } // forall

e Barrier operation synchronizes odd-numbered iterations at line 4 with
even-numbered iterations in line 8

* next statement may even be in a method such as oddPhase1()

15 COMP 322, Spring 2013 (V.Sarkar) %ﬂ

One-Dimensional Iterative Averaging with
Barrier Synchronization

1. double[] gVal=new double[n+2]; double[] gNew=new double[n+2]; gVal[n+l] = 1;
2. int nc = Runtime.getNumWorkers();

3. forall (point [jj]:[0:nc-1]) { // Chunked forall is now the outermost loop

4. double[] myVal = gVal; double[] myNew = gNew; // Local copy of myVal/myNew pointers
5. for (point [iter] : [0:m-1]) {

6. // Compute MyNew as function of input array MyVal

7. for (point [j]:getChunk([l:n],nc,jj)) // Iterate within chunk

8. myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;

9. next; // Barrier before executing next iteration of iter loop

10. // Swap myVal and myNew (each forall iterations swaps its pointers in local vars)
11. double[] temp=myVal; myVal=myNew; myNew=temp;

12. // myNew becomes input array for next iter

13. } // for
14.} // forall

« Use of barrier reduces number of async tasks created to just nc
 However, these nc tasks perform nc*m barrier operations

— Good trade-off since, barrier operations have lower overhead than task creation if number of chunks <=
number of workers

16 COMP 322, Spring 2013 (V.Sarkar) D

Worksheet #12: Forall Loops and Barriers

Name 1: Name 2:

1) Draw a “barrier matching” figure similar to slide 14 for the code fragment below.

1. string[] a = { “ab”, “cde”, “f” };

2. . int m = a.length;

3. forall (point[i] : [0:m-1]) {

4 for (int j = 0; j < al[i].lengthQ); j++) {

5. // forall iteration i 1is executing phase j

6 System.out.printinC"(" + 1 + "," + 3 + ")");
7 next;

8 }

9. }

17 COMP 322, Spring 2013 (V.Sarkar) D

