
COMP 322: Fundamentals of
Parallel Programming

Lecture 12: Barrier synchronization in forall
loops

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 12 6 February 2013

COMP 322, Spring 2013 (V.Sarkar)

Solution to Worksheet #11: One-dimensional
Iterative Averaging Example

1) Assuming n=9 and the input array below, perform one iteration of the
iterative averaging example by only filling in the blanks for odd values
of j in the myNew[] array. Recall that the computation is “myNew[j] =
(myVal[j-1] + myVal[j+1])/2.0;”

2) Will the contents of myVal[] and myNew[] change in further
iterations, after myNew above in 1) becomes myVal[] in the next
iteration?

No, this represents the converged value (equilibrium/fixpoint).

2

index, j 0 1 2 3 4 5 6 7 8 9 10

myVal 0 0 0.2 0 0.4 0 0.6 0 0.8 0 1

myNew 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

COMP 322, Spring 2013 (V.Sarkar)

HJ code for One-Dimensional Iterative Averaging
using nested for-finish-forasync structure (Recap)

1. for (point [iter] : [0:m-1]) {

2. // Compute MyNew as function of input array MyVal

3. finish forasync (point [j] : [1:n]) { // Create n tasks

4. myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;

5. } // finish forasync

6. temp=myVal; myVal=myNew; myNew=temp;// Swap myVal & myNew;

7. // myNew becomes input array for next iteration

8. } // for

3

Question: How many async tasks does this program create as a
function of m and n?

Answer: m*n. Can we do better with chunking?

COMP 322, Spring 2013 (V.Sarkar)

Example: HJ code for One-Dimensional Iterative Averaging
with chunked for-finish-forasync-for structure (Recap)

1. int nc = Runtime.getNumOfWorkers();

2. for (point [iter] : [0:m-1]) {

3. // Compute MyNew as function of input array MyVal

4. finish forasync (point [jj] : [0:nc-1]) {

5. for(point [j] : getChunk([1:n],nc,jj)) {

6. myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;

7. } // finish forasync

8. temp=myVal; myVal=myNew; myNew=temp;// Swap myVal & myNew;

9. // myNew becomes input array for next iteration

10.} // for

4

Question: How many async tasks does this program create as a
function of m, n, and nc?

Answer: m*nc. But we can do even better with “forall” loops and
“barrier” synchronization.

COMP 322, Spring 2013 (V.Sarkar)

Outline of Today’s Lecture

• Barrier Synchronization in Forall Loops

Acknowledgments

• COMP 322 Module 1 handout, Sections 10.1, 10.2, 10.4.

5

COMP 322, Spring 2013 (V.Sarkar)6

HJ’s forall statement = finish + forasync
+ barriers

Goal 1 (minor): replace common finish-forasync idiom by forall
e.g., replace
finish forasync (point [I,J] : [0:N-1,0:N-1])
 for (point[K] : [0:N-1])
 C[I][J] += A[I][K] * B[K][J];

by
forall (point [I,J] : [0:N-1,0:N-1])
 for (point[K] : [0:N-1])
 C[I][J] += A[I][K] * B[K][J];

Goal 2 (major): Also support “barrier” synchronization

• Caveat: forall is only supported on the work-sharing runtime
because of barrier synchronization

COMP 322, Spring 2013 (V.Sarkar)

Hello-Goodbye Forall Example (Listing 33)
forall (point[i] : [0:m-1]) {

 int sq = i*i;

 System.out.println(“Hello from task with square = “ + sq);

 System.out.println(“Goodbye from task with square = “ + sq);

}

• Sample output for m = 4
Hello from task with square = 0
Hello from task with square = 1
Goodbye from task with square = 0
Hello from task with square = 4
Goodbye from task with square = 4
Goodbye from task with square = 1
Hello from task with square = 9
Goodbye from task with square = 9

7

COMP 322, Spring 2013 (V.Sarkar)

Hello-Goodbye Forall Example (contd)
forall (point[i] : [0:m-1]) {

 int sq = i*i;

 System.out.println(“Hello from task with square = “ + sq);

 System.out.println(“Goodbye from task with square = “ + sq);

}

• Question: how can we transform this code so as to ensure that all tasks say
hello before any tasks say goodbye?

• Statements in red below will need to be moved to solve this problem

 Hello from task with square = 0
Hello from task with square = 1
Goodbye from task with square = 0
Hello from task with square = 4
Goodbye from task with square = 4
Goodbye from task with square = 1
Hello from task with square = 9
Goodbye from task with square = 9

8

COMP 322, Spring 2013 (V.Sarkar)

Hello-Goodbye Forall Example (contd)
1. forall (point[i] : [0:m-1]) {

2. int sq = i*i;

3. System.out.println(“Hello from task with square = “ + sq);

4. System.out.println(“Goodbye from task with square = “ + sq);

5. }

• Question: how can we transform this code so as to ensure that all tasks
say hello before any tasks say goodbye?

• Approach 1: Replace the forall loop by two forall loops, one for the
hello’s and one for the goodbye’s

—Problem: Need to communicate local sq values from one forall to the next
1. // APPROACH 1

2. forall (point[i] : [0:m-1]) {

3. int sq = i*i;

4. System.out.println(“Hello from task with square = “ + sq);

5. }

6. forall (point[i] : [0:m-1]) {

7. System.out.println(“Goodbye from task with square = “ + sq);

8. }

9

COMP 322, Spring 2013 (V.Sarkar)

Hello-Goodbye Forall Example (contd)
• Question: how can we transform this code so as to ensure that all

tasks say hello before any tasks say goodbye?
• Approach 2: insert a “barrier” between the hello’s and goodbye’s

—“next” statement in HJ’s forall loops
1. // APPROACH 2

2. forall (point[i] : [0:m-1]) {

3. int sq = i*i;

4. System.out.println(“Hello from task with square = “ + sq);

5. next; // Barrier

6. System.out.println(“Goodbye from task with square = “ + sq);

7. }

• next è each forall iteration suspends at next until all iterations arrive
(complete previous phase), after which the phase can be advanced

—If a forall iteration terminates before executing “next”, then the other iterations do
not wait for it

—Scope of next is the closest enclosing forall statement
—Special case of “phaser” construct (will be covered later in class)

10

Phase 0

Phase 1

COMP 322, Spring 2013 (V.Sarkar)

Impact of barrier on scheduling forall
iterations

 Modeling a next
operation in the
computation graph

Forall
iterations

Phase 0 Phase 1

i=0
i=1
i=2
i=3

SIG

SIG

SIG

WAIT

SIG
WAIT

WAIT

WAIT

next
signal edges

wait edges

11

COMP 322, Spring 2013 (V.Sarkar)

Observation 1: Scope of synchronization for
“next” is closest enclosing forall statement

1.forall (point [i] : [0:m-1]) {
2. System.out.println(“Starting forall iteration ” + i);
3. next; // Acts as barrier for forall-i
4. forall (point [j] : [0:n-1]) {
5. System.out.println(“Hello from task (“ + i + “,”
6. + j + “)”);
7. next; // Acts as barrier for forall-j
8. System.out.println(“Goodbye from task (“ + i + “,”
9. + j + “)”);
10. } // forall-j
11. next; // Acts as barrier for forall-i
12. System.out.println(“Ending forall iteration ” + i);
13.} // forall-i

12

COMP 322, Spring 2013 (V.Sarkar)

Observation 2: If a forall iteration terminates before
“next”, then other iterations do not wait for it

1. forall (point[i] : [0:m-1]) {

2. for (point[j] : [0:i]) {

3. // Forall iteration i is executing phase j

4. System.out.println("(" + i + "," + j + ")");

5. next;

6. }

7. }

• Outer forall-i loop has m iterations, 0…m-1

• Inner sequential j loop has i+1 iterations, 0…i

• Line 4 prints (task,phase) = (i, j) before performing a next operation.

• Iteration i = 0 of the forall-i loop prints (0, 0), performs a next, and then
terminates. Iteration i = 1 of the forall-i loop prints (1,0), performs a next,
prints (1,1), performs a next, and then terminates. And so on.

13

COMP 322, Spring 2013 (V.Sarkar)

Illustration of previous example
• Iteration i=0 of the forall-i

loop prints (0, 0) in Phase 0,
performs a next, and then
ends Phase 1 by terminating.

• Iteration i=1 of the forall-i
loop prints (1,0) in Phase 0,
performs a next, prints (1,1)
in Phase 1, performs a next,
and then ends Phase 2 by
terminating.

• And so on until iteration i=8
ends an empty Phase 8 by
terminating

Phase 0

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Phase 6

Phase 7

Phase 8

i=0 i=1 i=2 i=3 i=4 i=5 i=6 i=7
 | | | | | | | |
(0,0) (1,0) (2,0) (3,0) (4,0) (5,0) (6,0) (7,0)
 | | | | | | | |
next ----- next ----- next ----- next ----- next ----- next ----- next ----- next
 | | | | | | | |
 | (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) (7,1)
 | | | | | | | |
end ----- next ----- next ----- next ----- next ----- next ----- next ----- next
 | | | | | | |

 | (2,2) (3,2) (4,2) (5,2) (6,2) (7,2)
 | | | | | | |
 end ----- next ----- next ----- next ----- next ----- next ----- next

 | | | | | |
 | (3,3) (4,3) (5,3) (6,3) (7,3)

 | | | | | |
 end ----- next ----- next ----- next ----- next ----- next

 | | | | |
 | (4,4) (5,4) (6,4) (7,4)

 | | | | |
 end ----- next ----- next ----- next ----- next

 | | | |
 | (5,5) (6,5) (7,5)

 | | | |
 end ----- next ----- next ----- next

 | | |
 | (6,6) (7,6)

 | | |
 end ----- next ----- next

 | |
 | (7,7)

 | |
 end ----- next

 |
 end

i=0…7 are forall iterations

(i,j) = println output

next = barrier operation

end = termination of a forall iteration

14

Interesting figure. Try out
another one in Worksheet 12!

COMP 322, Spring 2013 (V.Sarkar)

Observation 3: Different forall iterations may perform “next”
at different program points (barrier matching problem)

1. forall (point[i] : [0:m-1]) {

2. if (i % 2 == 1) { // i is odd

3. oddPhase0(i);

4. next;

5. oddPhase1(i);

6. } else { // i is even

7. evenPhase0(i);

8. next;

9. evenPhase1(i);

10. } // if-else

11. } // forall

• Barrier operation synchronizes odd-numbered iterations at line 4 with
even-numbered iterations in line 8

• next statement may even be in a method such as oddPhase1()

15

1. double[] gVal=new double[n+2]; double[] gNew=new double[n+2]; gVal[n+1] = 1;

2. int nc = Runtime.getNumWorkers();

3. forall (point [jj]:[0:nc-1]) { // Chunked forall is now the outermost loop

4. double[] myVal = gVal; double[] myNew = gNew; // Local copy of myVal/myNew pointers

5. for (point [iter] : [0:m-1]) {

6. // Compute MyNew as function of input array MyVal

7. for (point [j]:getChunk([1:n],nc,jj)) // Iterate within chunk

8. myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;

9. next; // Barrier before executing next iteration of iter loop

10. // Swap myVal and myNew (each forall iterations swaps its pointers in local vars)

11. double[] temp=myVal; myVal=myNew; myNew=temp;

12. // myNew becomes input array for next iter

13. } // for

14. } // forall

• Use of barrier reduces number of async tasks created to just nc
• However, these nc tasks perform nc*m barrier operations

— Good trade-off since, barrier operations have lower overhead than task creation if number of chunks <=
number of workers

COMP 322, Spring 2013 (V.Sarkar)

One-Dimensional Iterative Averaging with
Barrier Synchronization

16

COMP 322, Spring 2013 (V.Sarkar)

Worksheet #12: Forall Loops and Barriers
Name 1: ___________________ Name 2: ___________________

1) Draw a “barrier matching” figure similar to slide 14 for the code fragment below.

1. String[] a = { “ab”, “cde”, “f” };

2. . . . int m = a.length; . . .

3. forall (point[i] : [0:m-1]) {

4. for (int j = 0; j < a[i].length(); j++) {

5. // forall iteration i is executing phase j

6. System.out.println("(" + i + "," + j + ")");

7. next;

8. }

9. }

17

