
COMP 322: Fundamentals of
Parallel Programming

Lecture 13: Forall and Barriers (contd),
Data-driven tasks

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 13 8 February 2013

COMP 322, Spring 2013 (V.Sarkar)

Worksheet #12: Forall Loops and Barriers
1) Draw a “barrier matching” figure similar to slide 14 for the code fragment below.

1. String[] a = { “ab”, “cde”, “f” };

2. . . . int m = a.length; . . .

3. forall (point[i] : [1:m]) {

4. for (int j = 0; j < a[i-1].length(); j++) {

5. // forall iteration i is executing phase j

6. System.out.println("(" + i + "," + j + ")");

7. next;

8. }

9. }

Solution

2

COMP 322, Spring 2013 (V.Sarkar)

Outline of Today’s Lecture

• Barrier Synchronization in Forall Loops (contd)

• Dataflow Computing, Data-Driven Futures (DDFs) and
Data-Driven Tasks (DDTs)

Acknowledgments

• COMP 322 Module 1 handout, Chapters 10, 11

3

COMP 322, Spring 2013 (V.Sarkar)

One-Dimensional Iterative Averaging: chunkedForkJoin
version with chunked for-forall-for structure (Recap)

1. double[] gVal=new double[n+2]; double[] gNew=new double[n+2];

2. gVal[0] = 0; gVal[n+1] = 1; // boundary condition

3. int nc = Runtime.getNumOfWorkers(); // number of chunks

4. double[] myVal = gVal; double[] myNew = gNew;

5. for (point [iter] : [0:m-1]) {

6. // Compute MyNew as function of input array MyVal

7. forall (point [jj] : [0:nc-1]) {

8. for(point [j] : getChunk([1:n],nc,jj))

9. myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;

10. } // forall

11. temp=myVal; myVal=myNew; myNew=temp;// Swap myVal & myNew;

12. // myNew becomes input array for next iteration

13.} // for

This program creates m*nc async tasks

4

1. double[] gVal=new double[n+2]; double[] gNew=new double[n+2]; gVal[n+1] = 1;

2. int nc = Runtime.getNumWorkers();

3. forall (point [jj]:[0:nc-1]) { // Chunked forall is now the outermost loop

4. double[] myVal = gVal; double[] myNew = gNew; // Copy of myVal/myNew pointers

5. for (point [iter] : [0:m-1]) {

6. // Compute MyNew as function of input array MyVal

7. for (point [j]:getChunk([1:n],nc,jj)) // Iterate within chunk

8. myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;

9. next; // Barrier before executing next iteration of iter loop

10. // Swap local pointers, myVal and myNew

11. double[] temp=myVal; myVal=myNew; myNew=temp;

12. // myNew becomes input array for next iter

13. } // for

14.} // forall

COMP 322, Spring 2013 (V.Sarkar)

One-Dimensional Iterative Averaging: Barrier version
with chunked forall-for-for+next structure (Recap)

5

This program creates nc async tasks, and performs m*nc barrier
operations

COMP 322, Spring 2013 (V.Sarkar)

What just happened?
chunkedForkJoin version:
5. for (point [iter] : [0:m-1])

7. forall (point [jj] : [0:nc-1]) {

8,9. for(point [j] : getChunk([1:n],nc,jj)) { ... }

10. } // forall

 . . .

13. } // for

barrier version:
3. forall (point [jj]:[0:nc-1]))

5. for (point [iter] : [0:m-1]) {

 . . .

7,8. for (point [j]:getChunk([1:n],nc,jj)) { ... } // for

9. next;

 . . .

13, } // for

15. } // forall

6

COMP 322, Spring 2013 (V.Sarkar)

Single Program Multiple Data (SPMD)
Parallel Programming Model

Basic idea

• Run the same code (program) on P workers

• Use the “rank” --- an ID ranging from 0 to (P-1) --- to determine what
data is processed by which worker
—Hence, “single-program” and “multiple-data”
—Rank is equivalent to index in a top-level “forall (point[i] : [0:P-1])” loop

• Lower-level programming model than dynamic async/finish parallelism
—Programmer’s code is essentially at the worker level (each forall iteration is

like a worker), and work distribution is managed by programmer by using
barriers and other synchronization constructs

—Harder to program but can be more efficient for restricted classes of
applications (e.g. for OneDimAveraging, but not for nqueens)

• Convenient for hardware platforms that are not amenable to efficient
dynamic task parallelism

—General-Purpose Graphics Processing Unit (GPGPU) accelerators
—Distributed-memory parallel machines

7

1. double[] gVal=new double[n+2]; double[] gNew=new double[n+2]; gVal[n+1] = 1;

2. int nc = Runtime.getNumWorkers();

3. forall (point [jj]:[0:nc-1]) { // Chunked forall is now the outermost loop

4. double[] myVal = gVal; double[] myNew = gNew; // Copy of myVal/myNew pointers

5. for (point [iter] : [0:m-1]) {

6. // Compute MyNew as function of input array MyVal

7. for (point [j]:getChunk([1:n],nc,jj)) // Iterate within chunk

8. myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;

9. next; // Barrier before executing next iteration of iter loop

10. // Swap local pointers, myVal and myNew

11. double[] temp=myVal; myVal=myNew; myNew=temp;

12. // myNew becomes input array for next iter

13. } // for

14.} // forall

COMP 322, Spring 2013 (V.Sarkar)

One-Dimensional Iterative Averaging: Barrier version with
chunked forall-for-for+next structure is an SPMD program

8

Instead of async-finish, this SPMD version of OneDimAveraging creates one
task per worker, uses getChunk() to distribute work, and use barriers to
synchronize workers.

COMP 322, Spring 2013 (V.Sarkar)

Motivation for “single” statement with barriers ---
Hello Goodbye Example revisited (Listing 36)

• Goal: rewrite Hello-Goodbye example so as to print a single log
message in between phases

• Simple solution: add a second barrier and designate a specific
forall task to print the log message between those two barriers

1. // Listing 36 in Module 1 handout

2. forall (point[i] : [0:m-1]) {

3. int sq = i*i;

4. System.out.println(“Hello from task with square = “ + sq);

5. next; // Barrier

6. if (i==0) System.out.println(“LOG: Between Hello & Goodbye phases”));

7. next; // Barrier

8. System.out.println(“Goodbye from task with square = “ + sq);

9. }

• More efficient solution: use next-with-single

9

COMP 322, Spring 2013 (V.Sarkar)

next-end

signal edges

wait edges

next-start

single-statement

Next-with-Single Statement

 “next single-stmt;” is
a barrier in which
single-stmt is
performed exactly
once after all tasks
have completed the
previous phase and
before any task begins
its next phase.

 Modeling next-with-single
in the Computation Graph

10

COMP 322, Spring 2013 (V.Sarkar)

Use of next-with-single to print a log message
between Hello and Goodbye phases

1.// Listing 37 in Module 1 handout

2. forall (point[i] : [0:m-1]) {

3. int sq = i*i;

4. System.out.println(“Hello from task with square = “ + sq);

5. next { // next-with-single statement

6. System.out.println(“LOG: Between Hello & Goodbye phases”);

7. }

8. System.out.println(“Goodbye from task with square = “ + sq);

9. }

11

1. static double[] gVal=new double[n+2];

2. static double[] gNew=new double[n+2];

3. . . .

4. gVal[n+1] = 1; // Boundary condition

5. int nc = Runtime.getNumWorkers();

6. forall (point [jj]:[0:nc-1]) { // forall is now outermost loop

7. for (point [iter] : [0:m-1]) {

8. // Compute Gnew as function of input array Gval
9. for (point [j]:getChunk([1:n],nc,jj)) // Iterate within chunk

10. gNew[j] = (gVal[j-1] + gVal[j+1])/2.0;

11. // Use next-with-single

12. next {double[] temp=gVal; gVal=gNew; gNew=temp;} // single

13. // gNew becomes input array for next iter

14. } // for

15.} // forall

COMP 322, Spring 2013 (V.Sarkar)

One-Dimensional Iterative Averaging with
Single Statement and global gVal & gNew fields

12

COMP 322, Spring 2013 (V.Sarkar)

Outline of Today’s Lecture

• Barrier Synchronization in Forall Loops (contd)

• Dataflow Computing, Data-Driven Futures (DDFs) and
Data-Driven Tasks (DDTs)

Acknowledgments

• COMP 322 Module 1 handout, Chapters 10, 11

13

COMP 322, Spring 2013 (V.Sarkar)

Dataflow Computing
• Original idea: replace machine instructions by a small

set of dataflow operators

Fork Primitive Ops

+

Switch Merge

T F
T F

T T

+ T F
T F

T T

⇒

14

COMP 322, Spring 2013 (V.Sarkar)

x = a + b;
y = b * 7;
z = (x-y) * (x+y);

7
a b

x y
1 2

3 4

5An operator executes when all its
input values are present; copies of
the result value are distributed to
the destination operators. No separate control flow

Figure 37: Example instruction
sequence and its dataflow graph

15

COMP 322, Spring 2013 (V.Sarkar)

Macro-Dataflow Programming

TaskA! TaskB!

TaskA!

TaskC!
main!

TaskB!

• “Macro-dataflow” = extension of dataflow model from instruction-level
to task-level operations
• General idea: build an arbitrary task graph, but restrict all inter-task
communications to single-assignment variables

• Static dataflow ==> graph fixed when program execution starts
• Dynamic dataflow ==> graph can grow dynamically

• Semantic guarantees: race-freedom, determinism
• Deadlocks are possible due to unavailable inputs (but they are
deterministic)

Communication via single-
assignment variable

16

COMP 322, Spring 2013 (V.Sarkar)

Extending HJ Futures for Macro-Dataflow:
Data-Driven Futures (DDFs) and Data-Driven Tasks (DDTs)
ddfA = new DataDrivenFuture<T1>();

• Allocate an instance of a data-driven-future object (container)

• Object in container must be of type T1

async await(ddfA, ddfB, …) Stmt

• Create a new data-driven-task to start executing Stmt after all of ddfA,
ddfB, … become available (i.e., after task becomes “enabled”)

ddfA.put(V) ;

• Store object V (of type T1) in ddfA, thereby making ddfA available

• Single-assignment rule: at most one put is permitted on a given DDF
ddfA.get()

• Return value (of type T1) stored in ddfA

• Can only be performed by async’s that contain ddfA in their await
clause (hence no blocking is necessary for DDF gets)

17

COMP 322, Spring 2013 (V.Sarkar)

Implementing Future Tasks using DDFs
• Future version

1. final future<T> f = async<T> { return g(); };

2. S1

3. ... = f.get();

4. S2

5. S3

• DDF version
1. DataDrivenFuture<T> f = new DataDrivenFuture<T>();

2. async { f.put(g()) };

3. S1

4. finish async await(f) {

5. ... = f.get();

6. S2 // DDT must include full continuation starting

7. S3 // with S2

8. }

18

COMP 322, Spring 2013 (V.Sarkar)

Use of DDFs with dummy objects
(like future<void>)

1. finish {

2. DataDrivenFuture ddfA = new DataDrivenFuture();

3. DataDrivenFuture ddfB = new DataDrivenFuture();

4. DataDrivenFuture ddfC = new DataDrivenFuture();

5. DataDrivenFuture ddfD = new DataDrivenFuture();

6. DataDrivenFuture ddfE = new DataDrivenFuture();

7. async { ... ; ddfA.put(""); } // Task A

8. async await(ddfA) { ... ; ddfB.put(""); } // Task B

9. async await(ddfA) { ... ; ddfC.put(""); } // Task C

10. async await(ddfB,ddfC) { ... ; ddfD.put(""); } // Task D

11. async await(ddfC) { ... ; ddfE.put(""); } // Task E

12. async await(ddfD,ddfE) { ... } // Task F

13. } // finish

• This example uses an empty string as a dummy object

19

COMP 322, Spring 2013 (V.Sarkar)

Differences between Futures and DDFs/DDTs
• Consumer task blocks on get() for each future that it reads, whereas

async-await does not start execution till all DDFs are available
• Future tasks cannot deadlock, but it is possible for a DDT to block

indefinitely (“deadlock”) if one of its input DDFs never becomes
available

• DDTs and DDFs are more general than futures
—Producer task can only write to a single future object, where as a

DDT can write to multiple DDF objects
—The choice of which future object to write to is tied to a future task

at creation time, where as the choice of output DDF can be deferred
to any point with a DDT

• DDTs and DDFs can be more implemented more efficiently than futures
—An “async await” statement does not block the worker, unlike a

future.get()
—You will never see the following message with “async await”
– “ERROR: Maximum number of hj threads per place reached”

20

COMP 322, Spring 2013 (V.Sarkar)

Two Exception (error) cases for DDFs
that do not occur in futures

• Case 1: If two put’s are attempted on the same DDF, an
exception is thrown because of the violation of the
single-assignment rule
—There can be at most one value provided for a future

object (since it comes from the producer task’s
return statement)

• Case 2: If a get is attempted by a task on a DDF that
was not in the task’s await list, then an exception is
thrown because DDF’s do not support blocking gets
—Futures support blocking gets

21

COMP 322, Spring 2013 (V.Sarkar)

Deadlock example with DDTs
1. DataDrivenFuture left = new DataDrivenFuture();
2. DataDrivenFuture right = new DataDrivenFuture();
3. finish {
4. async await(left) right.put(rightWriter());
5. async await(right) left.put(leftWriter());
6. }

22

COMP 322, Spring 2013 (V.Sarkar)

Another Example with DDTs and DDFs
1. DataDrivenFuture left = new DataDrivenFuture();

2. DataDrivenFuture right = new DataDrivenFuture();

3. finish {

4. async await(left) leftReader(left); // Task3

5. async await(right) rightReader(right); // Task5

6. async await(left,right)

7. bothReader(left,right); // Task4

8. async left.put(leftWriter()); // Task1

9. async right.put(rightWriter());// Task2

10. }

• await clauses capture data flow relationships

Interesting example. Let’s discuss it further in Worksheet 13!

23

COMP 322, Spring 2013 (V.Sarkar)

Implementing DDFs/DDTs using Future
tasks

Shown for completeness, but not recommend for performance ...

• DDF version
DataDrivenFuture f1 = new DataDrivenFuture();
DataDrivenFuture f2 = new DataDrivenFuture();
async { f1.put(g()) }; async { f2.put(h()) };
// async doesn’t start till f1 & f2 are available

async await (f1, f2) {
 ... = f1.get() + f2.get(); };

• Future version
final future<int> f1 = async<int> { return g(); };
final future<int> f2 = async<int> { return h(); };
// Async may block at each get() operation
async { ... = f1.get() + f2.get(); };

24

COMP 322, Spring 2013 (V.Sarkar)

Worksheet #12: Forall Loops and Barriers
Name 1: ___________________ Name 2: ___________________

 For the example below, will reordering the five async statements change the meaning
of the program? If so, show two orderings that exhibit different behaviors. If not,
explain why not. (You can use the space below this slide for your answer.)

1. DataDrivenFuture left = new DataDrivenFuture();

2. DataDrivenFuture right = new DataDrivenFuture();

3. finish {

4. async await(left) leftReader(left); // Task3

5. async await(right) rightReader(right); // Task5

6. async await(left,right)

7. bothReader(left,right); // Task4

8. async left.put(leftWriter()); // Task1

9. async right.put(rightWriter());// Task2

10. }

25

