
COMP 322: Fundamentals of
Parallel Programming

Lecture 14: Recap of HJ constructs,
Point-to-Point Synchronization,

Pipeline Parallelism, Introduction to Phasers

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 14 11 February 2013

COMP 322, Spring 2013 (V.Sarkar)2

Announcements
• Combined lecture quiz for this week (Week 5) and next week

(Week 6) will be assigned on Thursday, Feb 14, and due by
Sunday, Feb 17

• No labs or lab quizzes next week (Week 6)

• Homework 3 is due by by 11:55pm on Friday, February 22, 2013

• Take-home midterm (Exam 1) will be given after lecture on
Wednesday, February 20, 2013
— Closed-book, closed computer
— 2-hour duration
— Will need to be returned to Sherry Nassar (Duncan Hall 3137)

by 4pm on Friday, February 22, 2013

COMP 322, Spring 2013 (V.Sarkar)

Worksheet #13: Forall Loops and Barriers
 For the example below, will reordering the five async statements change the

meaning of the program? If so, show two orderings that exhibit different behaviors.
If not, explain why not. (You can use the space below this slide for your answer.)

1. DataDrivenFuture left = new DataDrivenFuture();

2. DataDrivenFuture right = new DataDrivenFuture();

3. finish {

4. async await(left) leftReader(left); // Task3

5. async await(right) rightReader(right); // Task5

6. async await(left,right)

7. bothReader(left,right); // Task4

8. async left.put(leftWriter()); // Task1

9. async right.put(rightWriter());// Task2

10. }

No, reordering consecutive async’s will never change the meaning of the program,
whether or not the async’s have await clauses.

3

COMP 322, Spring 2013 (V.Sarkar)

Outline of Today’s Lecture

• Recap of HJ constructs studied so far
• Point-to-Point Synchronization, Pipeline Parallelism
• Introduction to Phasers

Acknowledgments

• COMP 322 Module 1 handout, Sections 12.1, 12.2

• Knowing When to Parallelize: Rules-of-Thumb based on User Experiences. Cherri
Pancake.
—Source for seismic imaging example

• Barry Wilkinson and Michael Allen. Parallel Programming: Techniques and
Applications Using Networked Workstations and Parallel Computers (2nd Edition).
Prentice-Hall, 2004.
—Source for figures related to pipeline parallelism

4

COMP 322, Spring 2013 (V.Sarkar)

Recap of HJ constructs studied so far
• Basic language summary can be found here:

—https://wiki.rice.edu/confluence/display/PARPROG/
HJLanguageSummary

—Additional documentation in preparation

• Task creation constructs
— async Stmt
— async<T> { Stmt ; return ...; }
— forasync (point[i,j] : ...) Stmt
— forall (point[i,j] : ...) Stmt

• Loop constructs
— point
— region
— for (point[i,j] : ...) Stmt

5

COMP 322, Spring 2013 (V.Sarkar)

Recap of HJ constructs studied so far
(contd)

• Synchronization constructs
— finish
— f.get()
— finish accumulators
— next
— async await

• Efficiency constructs
— Converting async to async seq
— Loop chunking with GetChunk()
— Converting futures to data-driven futures

• Abstract metrics
— perf.doWork(n)

6

COMP 322, Spring 2013 (V.Sarkar)

Outline of Today’s Lecture

• Recap of HJ constructs studied so far
• Point-to-Point Synchronization, Pipeline Parallelism
• Introduction to Phasers

Acknowledgments

• COMP 322 Module 1 handout, Sections 12.1, 12.2

• Knowing When to Parallelize: Rules-of-Thumb based on User Experiences. Cherri
Pancake.
—Source for seismic imaging example

• Barry Wilkinson and Michael Allen. Parallel Programming: Techniques and
Applications Using Networked Workstations and Parallel Computers (2nd Edition).
Prentice-Hall, 2004.
—Source for figures related to pipeline parallelism

7

COMP 322, Spring 2013 (V.Sarkar)

Point-to-Point Synchronization: Example 1
1. finish { // Expanded finish-forasync version of forall

2. forasync (point[i] : [1:m]) {

3. doPhase1(i);

4. // Iteration i waits for i-1 and i+1 to complete Phase 1

5 doPhase2(i);

6 }

7 }

• Need synchronization where iteration i only waits for iterations i−1
and i+1 to complete their work in doPhase1() before it starts
doPhase2(i)
— Less constrained than a barrier --- only waits for two preceding iterations

— More general than async await --- waiting occurs in middle of task

COMP 322, Spring 2011 (V.Sarkar)!18

Barrier & P-2-P Sync for 1-D
Averaging!

doPhase1(i)

doPhase2(i)

 i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8

COMP 322, Spring 2013 (V.Sarkar)

Point-to-point Synchronization: Example 2
Pipeline Parallelism

• Seismic imaging pipeline example with three stages
1. Simulation generates a sequence of results, one per time step.
2. Rendering takes simulation results for one time step as input, and

generates an image for that time step.
3. Formatting image as input and outputs it into an animation sequence.

• Even though the processing is sequential for a single time step,
pipeline parallelism can be exploited via point-to-point
synchronization between neighboring stages

Oregon State University C. M. Pancake (pancake@cs.orst.edu)

Pipeline Parallelism

! Scenario: seismic imaging problem
! Data from different time steps used to generate series of images
! Job can be subdivided into phases which process the output of earlier phases
! Concurrency comes from overlapping the processing for multiple phases

! Key characteristic: only need to pass results one-way
! Can delay start-up of later phases so input will be ready

! Potential problems
! Assumes phases are computationally balanced
! (or that processors have unequal capabilities)

Ti me s t e p Se i s mi c
Si mul a t i o n

Vol ume Re nd e r i ng
Ap pl i ca t i o n

Fo r ma t t i ng
Ap pl i ca t i o n

t i me s t e p
i mage

s i mul at i on
r e s ul t s

ani mat i on
se qu e nc e

Timestep Seismic
Simulation

Volume Rendering
Application

Formatting
Application

t im e st e p
ima ge

simulation
results

animation
sequence

Oregon State University C. M. Pancake (pancake@cs.orst.edu)

Fully Synchronous Parallelism

! Scenario: atmospheric dynamics problem
! Data models atmospheric layer; highly interdependent in horizontal layers
! Same operation is applied in parallel to multiple data
! Concurrency comes from handling large amounts of data at once

! Key characteristic: Each operation is performed on all (or most) data
! Operations/decisions depend on results of previous operations

! Potential problems
! Serial bottlenecks force other processors to “wait”

I ni t i a l At mo s ph er i c Part i t i ons

At mos phe r i c Mode l i ng Ap pl i c at i on

Re s ul t i n g Pa rt i t i on s

Initial Atmospheric Partitions

Atmospheric Modeling Application

Resulting Partitions

Processor 0 Processor 1 Processor 2

COMP 322, Spring 2013 (V.Sarkar)

General structure of a One-Dimensional
Pipeline

• Assuming that the inputs d0, d1, . . . arrive sequentially, pipeline
parallelism can be exploited by enabling task (stage) Pi to work on
item dk−i when task (stage) P0 is working on item dk.

95
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen ! Prentice Hall, 1998

P0

P4

P3

P5

P2

P1

Time

Figure 5.6 Pipeline processing 10 data elements.

d9d8d7d6d5d4d3d2d1d0 P0 P1 P2 P3 P4 P5

(a) Pipeline structure

(b) Timing diagram

P8

P7

P9

P6

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

P7P6 P8 P9

Input sequence

p " 1 n

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8

d0 d1 d2 d3 d4 d5 d6 d7

d0 d1 d2 d3 d4 d5 d6

COMP 322, Spring 2013 (V.Sarkar)

95
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen ! Prentice Hall, 1998

P0

P4

P3

P5

P2

P1

Time

Figure 5.6 Pipeline processing 10 data elements.

d9d8d7d6d5d4d3d2d1d0 P0 P1 P2 P3 P4 P5

(a) Pipeline structure

(b) Timing diagram

P8

P7

P9

P6

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

P7P6 P8 P9

Input sequence

p " 1 n

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8

d0 d1 d2 d3 d4 d5 d6 d7

d0 d1 d2 d3 d4 d5 d6

Timing Diagram for One-Dimensional
Pipeline

• Horizontal axis shows progress of time from left to right, and
vertical axis shows which data item is being processed by which
pipeline stage at a given time.

p
pi

pe
lin

e
st

ag
es

n data items

COMP 322, Spring 2013 (V.Sarkar)

Complexity Analysis of One-
Dimensional Pipeline

• Assume
—n = number of items in input sequence
—p = number of pipeline stages
—each stage takes 1 unit of time to process a single data item

• WORK = n×p is the total work for all data items

• CPL = n + p − 1 is the critical path length of the pipeline

• Ideal parallelism, PAR = WORK/CPL = np/(n + p − 1)
• Boundary cases

—p = 1 è PAR = n/(n + 1 – 1) = 1
—n = 1 è PAR = p/(1 + p – 1) = 1
—n = p è PAR = p/(2 – 1/p) ≈ p/2
—n ≫ p è PAR ≈ p

COMP 322, Spring 2013 (V.Sarkar)

Outline of Today’s Lecture

• Recap of HJ constructs studied so far
• Point-to-Point Synchronization, Pipeline Parallelism
• Introduction to Phasers

Acknowledgments

• COMP 322 Module 1 handout, Sections 12.1, 12.2

• Knowing When to Parallelize: Rules-of-Thumb based on User Experiences. Cherri
Pancake.
—Source for seismic imaging example

• Barry Wilkinson and Michael Allen. Parallel Programming: Techniques and
Applications Using Networked Workstations and Parallel Computers (2nd Edition).
Prentice-Hall, 2004.
—Source for figures related to pipeline parallelism

13

COMP 322, Spring 2013 (V.Sarkar)

Point-to-point synchronization

(Left-right neighbor synchronization)

iter = i

iter = i+1

Barrier synchronization

Barrier vs Point-to-Point Synchronization for
One-Dimensional Iterative Averaging Example

iter = i

iter = i+1

14

COMP 322, Spring 2013 (V.Sarkar)

Phasers: a unified construct for barrier
and point-to-point synchronization

• Previous examples motivated the need for point-to-point
synchronization

• HJ phasers unify barriers with point-to-point synchronization

• A limited version of phasers was also added to the Java 7
java.util.concurrent.Phaser library (with acknowledgment to Rice)

• Phaser properties
—Barrier and point-to-point synchronization
—Supports dynamic parallelism i.e., the ability for tasks to drop phaser

registrations on termination, and for new tasks to add new phaser
registrations.

—Deadlock freedom
—Support for phaser accumulators (reductions that can be performed

with phasers)

15

COMP 322, Spring 2013 (V.Sarkar)

• Phaser allocation
—phaser ph = new phaser(mode);

– Phaser ph is allocated with registration mode
– Phaser lifetime is limited to scope of Immediately Enclosing Finish (IEF)

• Registration Modes
— phaserMode.SIG, phaserMode.WAIT, phaserMode.SIG_WAIT, phaserMode.SIG_WAIT_SINGLE
— NOTE: phaser WAIT is unrelated to Java wait/notify (which we will study later)

• Phaser registration
—async phased (ph1<mode1>, ph2<mode2>, …) <stmt>

– Spawned task is registered with ph1 in mode1, ph2 in mode2, …
– Child task’s capabilities must be subset of parent’s
– async phased <stmt> propagates all of parent’s phaser registrations to child

• Synchronization
—next;

– Advance each phaser that current task is registered on to its next phase
– Semantics depends on registration mode
– Barrier is a special case of phaser, which is why next is used for both

Summary of Phaser Construct

16

COMP 322, Spring 2013 (V.Sarkar)

Simple Example with Four Async Tasks
and One Phaser (Listing 43)

1. finish {

2. ph = new phaser(); // Default mode is SIG_WAIT

3. async phased(ph<phaserMode.SIG>){ //A1 (SIG mode)

4. doA1Phase1(); next;

5. doA1Phase2(); }

6. async phased { //A2 (default SIG_WAIT mode from parent)

7. doA2Phase1(); next;

8. doA2Phase2(); }

9. async phased { //A3 (default SIG_WAIT mode from parent)

10. doA3Phase1(); next;

11. doA3Phase2(); }

12. async phased(ph<phaserMode.WAIT>){ //A4 (WAIT mode)

13. doA4Phase1(); next; doA4Phase2(); }

14. }

17

COMP 322, Spring 2013 (V.Sarkar)

Simple Example with Four Async Tasks
and One Phaser (contd)

18

Semantics of next depends on registration mode!
SIG_WAIT: next = signal + wait!
SIG: next = signal (Don’t wait for any task)!
WAIT: next = wait (Don’t disturb any task)!

signal!

wait!

�� �� �� ��

next!
������

SIG! SIG_WAIT!SIG_WAIT! WAIT!

 A master task receives all signals and broadcasts a barrier completion!

COMP 322, Spring 2013 (V.Sarkar)

Capability Hierarchy

• A task can be registered in one of four modes with respect to a
phaser: SIG_WAIT_SINGLE, SIG_WAIT, SIG, or WAIT. The mode
defines the set of capabilities — signal, wait, single — that the task
has with respect to the phaser. The subset relationship defines a
natural hierarchy of the registration modes. A task can drop (but
not add) capabilities after initialization.

SIG_WAIT_SINGLE = { signal, wait, single }

SIG_WAIT = { signal, wait }

SIG = { signal } WAIT = { wait }

19

COMP 322, Spring 2013 (V.Sarkar)

Left-Right Neighbor Synchronization
Example for m=3 (Listing 46)

20

