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Announcements
• Combined lecture quiz for this week (Week 5) and next week 

(Week 6) will be assigned on Thursday, Feb 14, and due by 
Sunday, Feb 17

• No labs or lab quizzes next week (Week 6)

• Homework 3 is due by by 11:55pm on Friday, February 22, 2013

• Take-home midterm (Exam 1) will be given after lecture on 
Wednesday, February 20, 2013
— Closed-book, closed computer
— 2-hour duration
— Will need to be returned to Sherry Nassar (Duncan Hall 3137) 

by 4pm on Friday, February 22, 2013
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Worksheet #13: Forall Loops and Barriers
   For the example below, will reordering the five async statements change the 

meaning of the program?  If so, show two orderings that exhibit different behaviors.  
If not, explain why not.  (You can use the space below this slide for your answer.)

1. DataDrivenFuture left = new DataDrivenFuture();

2. DataDrivenFuture right = new DataDrivenFuture();

3. finish {

4.   async await(left) leftReader(left); // Task3

5.   async await(right) rightReader(right); // Task5

6.   async await(left,right) 

7.         bothReader(left,right); // Task4

8.   async left.put(leftWriter()); // Task1

9.   async right.put(rightWriter());// Task2

10. }

No, reordering consecutive async’s will never change the meaning of the program, 
whether or not the async’s have await clauses.
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Outline of Today’s Lecture

• Recap of HJ constructs studied so far
• Point-to-Point Synchronization, Pipeline Parallelism
• Introduction to Phasers

Acknowledgments

• COMP 322 Module 1 handout, Sections 12.1, 12.2

• Knowing When to Parallelize: Rules-of-Thumb based on User Experiences. Cherri 
Pancake.
—Source for seismic imaging example

• Barry Wilkinson and Michael Allen. Parallel Programming: Techniques and 
Applications Using Networked Workstations and Parallel Computers (2nd Edition). 
Prentice-Hall, 2004.
—Source for figures related to pipeline parallelism
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Recap of HJ constructs studied so far 
• Basic language summary can be found here:

—https://wiki.rice.edu/confluence/display/PARPROG/
HJLanguageSummary

—Additional documentation in preparation

• Task creation constructs
— async Stmt 
— async<T> { Stmt ; return ...; }
— forasync (point[i,j] : ...) Stmt
— forall (point[i,j] : ...) Stmt

• Loop constructs
— point
— region
— for (point[i,j] : ...) Stmt
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Recap of HJ constructs studied so far 
(contd)

• Synchronization constructs
— finish 
— f.get()
— finish accumulators
— next
— async await

• Efficiency constructs
— Converting async to async seq
— Loop chunking with GetChunk()
— Converting futures to data-driven futures

• Abstract metrics
— perf.doWork(n)

6



COMP 322, Spring 2013 (V.Sarkar)

Outline of Today’s Lecture

• Recap of HJ constructs studied so far
• Point-to-Point Synchronization, Pipeline Parallelism
• Introduction to Phasers

Acknowledgments

• COMP 322 Module 1 handout, Sections 12.1, 12.2

• Knowing When to Parallelize: Rules-of-Thumb based on User Experiences. Cherri 
Pancake.
—Source for seismic imaging example

• Barry Wilkinson and Michael Allen. Parallel Programming: Techniques and 
Applications Using Networked Workstations and Parallel Computers (2nd Edition). 
Prentice-Hall, 2004.
—Source for figures related to pipeline parallelism

7



COMP 322, Spring 2013 (V.Sarkar)

Point-to-Point Synchronization: Example 1
1. finish { // Expanded finish-forasync version of forall 

2.   forasync (point[i] : [1:m]) {

3.     doPhase1(i);

4.     // Iteration i waits for i-1 and i+1 to complete Phase 1

5     doPhase2(i);

6   }

7 }

• Need synchronization where iteration i only waits for iterations i−1 
and i+1 to complete their work in doPhase1() before it starts 
doPhase2(i)
— Less constrained than a barrier --- only waits for two preceding iterations

— More general than async await --- waiting occurs in middle of task

COMP 322, Spring 2011 (V.Sarkar)!18 

Barrier & P-2-P Sync for 1-D 
Averaging!

doPhase1(i) 

doPhase2(i) 

 i=1   i=2    i=3    i=4    i=5    i=6    i=7    i=8 
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Point-to-point Synchronization: Example 2
Pipeline Parallelism

• Seismic imaging pipeline example with three stages
1. Simulation generates a sequence of results, one per time step. 
2. Rendering takes simulation results for one time step as input, and 

generates an image for that time step. 
3. Formatting image as input and outputs it into an animation sequence.

• Even though the processing is sequential for a single time step, 
pipeline parallelism can be exploited via point-to-point 
synchronization between neighboring stages

Oregon State University C. M. Pancake (pancake@cs.orst.edu)

Pipeline Parallelism

! Scenario:  seismic imaging problem
! Data from different time steps used to generate series of images
! Job can be subdivided into phases which process the output of earlier phases
! Concurrency comes from overlapping the processing for multiple phases

! Key characteristic: only need to pass results one-way
! Can delay start-up of later phases so input will be ready

! Potential problems
! Assumes phases are computationally balanced  
! (or that processors have unequal capabilities)
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Oregon State University C. M. Pancake (pancake@cs.orst.edu)

Fully Synchronous Parallelism

! Scenario:  atmospheric dynamics problem
! Data models atmospheric layer; highly interdependent in horizontal layers
! Same operation is applied in parallel to multiple data
! Concurrency comes from handling large amounts of data at once 

! Key characteristic: Each operation is performed on all (or most) data
! Operations/decisions depend on results of previous operations

! Potential problems
! Serial bottlenecks force other processors to “wait”

I ni t i a l  At mo s ph er i c  Part i t i ons

At mos phe r i c   Mode l i ng  Ap pl i c at i on

Re s ul t i n g Pa rt i t i on s

Initial Atmospheric Partitions

Atmospheric  Modeling  Application

Resulting Partitions

Processor 0 Processor 1 Processor 2
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General structure of a One-Dimensional 
Pipeline

• Assuming that the inputs d0, d1, . . . arrive sequentially, pipeline 
parallelism can be exploited by enabling task (stage) Pi to work on 
item dk−i when task (stage) P0 is working on item dk.

95
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Figure 5.6 Pipeline processing 10 data elements.
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Timing Diagram for One-Dimensional 
Pipeline

• Horizontal axis shows progress of time from left to right, and 
vertical axis shows which data item is being processed by which 
pipeline stage at a given time. 

p 
pi

pe
lin

e 
st

ag
es

n data items



COMP 322, Spring 2013 (V.Sarkar)

Complexity Analysis of One-
Dimensional Pipeline

• Assume 
—n = number of items in input sequence
—p = number of pipeline stages
—each stage takes 1 unit of time to process a single data item 

• WORK = n×p is the total work for all data items

• CPL = n + p − 1 is the critical path length of the pipeline

• Ideal parallelism, PAR = WORK/CPL = np/(n + p − 1)
• Boundary cases

—p = 1 è PAR = n/(n + 1 – 1) = 1
—n = 1 è PAR = p/(1 + p – 1) = 1
—n = p è PAR = p/(2 – 1/p) ≈ p/2
—n ≫ p è PAR ≈ p
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Point-to-point synchronization

(Left-right neighbor synchronization)

iter = i

iter = i+1

Barrier synchronization

Barrier vs Point-to-Point  Synchronization for 
One-Dimensional Iterative Averaging Example

iter = i

iter = i+1
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Phasers: a unified construct for barrier 
and point-to-point synchronization

• Previous examples motivated the need for point-to-point 
synchronization

• HJ phasers unify barriers with point-to-point synchronization

• A limited version of phasers was also added to the Java 7 
java.util.concurrent.Phaser library (with acknowledgment to Rice)

• Phaser properties
—Barrier and point-to-point synchronization
—Supports dynamic parallelism i.e., the ability for tasks to drop phaser 

registrations on termination, and for new tasks to add new phaser 
registrations.

—Deadlock freedom
—Support for phaser accumulators (reductions that can be performed 

with phasers)
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• Phaser allocation
—phaser ph = new phaser(mode);

– Phaser ph is allocated with registration mode
– Phaser lifetime is limited to scope of Immediately Enclosing Finish (IEF)

• Registration Modes
— phaserMode.SIG, phaserMode.WAIT, phaserMode.SIG_WAIT, phaserMode.SIG_WAIT_SINGLE
— NOTE: phaser WAIT is unrelated to Java wait/notify (which we will study later)

• Phaser registration
—async phased (ph1<mode1>, ph2<mode2>, … ) <stmt>

– Spawned task is registered with ph1 in mode1, ph2 in mode2, …
– Child task’s capabilities must be subset of parent’s
– async phased <stmt> propagates all of parent’s phaser registrations to child

• Synchronization
—next; 

– Advance each phaser that current task is registered on to its next phase
– Semantics depends on registration mode
– Barrier is a special case of phaser, which is why next is used for both

Summary of Phaser Construct
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Simple Example with Four Async Tasks 
and One Phaser (Listing 43)

1. finish {

2.   ph = new phaser(); // Default mode is SIG_WAIT

3.   async phased(ph<phaserMode.SIG>){ //A1 (SIG mode)

4.     doA1Phase1(); next; 

5.     doA1Phase2(); }

6.   async phased { //A2 (default SIG_WAIT mode from parent)

7.     doA2Phase1(); next; 

8.     doA2Phase2(); }

9.   async phased { //A3 (default SIG_WAIT mode from parent)

10.    doA3Phase1(); next; 

11.    doA3Phase2(); }  

12.  async phased(ph<phaserMode.WAIT>){ //A4 (WAIT mode)

13.    doA4Phase1(); next; doA4Phase2(); }

14. }
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Simple Example with Four Async Tasks 
and One Phaser (contd)

18

Semantics of next depends on registration mode!
SIG_WAIT: next = signal + wait!
SIG: next = signal (Don’t wait for any task)!
WAIT: next = wait (Don’t disturb any task)!

signal!

wait!

�� �� �� ��

next!
������

SIG! SIG_WAIT!SIG_WAIT! WAIT!

 A master task receives all signals and broadcasts a barrier completion!
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Capability Hierarchy

• A task can be registered in one of four modes with respect to a 
phaser: SIG_WAIT_SINGLE, SIG_WAIT, SIG, or WAIT. The mode 
defines the set of capabilities — signal, wait, single — that the task 
has with respect to the phaser. The subset relationship defines a 
natural hierarchy of the registration modes.  A task can drop (but 
not add) capabilities after initialization.

SIG_WAIT_SINGLE = { signal, wait, single }

SIG_WAIT = { signal, wait }

SIG = { signal } WAIT = { wait }
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Left-Right Neighbor Synchronization 
Example for m=3 (Listing 46)
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