
COMP 322: Fundamentals of
Parallel Programming

Lecture 15: Point-to-Point Synchronization
with Phasers

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 15 13 February 2013

COMP 322, Spring 2013 (V.Sarkar)

Outline of Today’s Lecture

• Point-to-Point Synchronization with Phasers

• Signal statement and split-phase barriers

Acknowledgments

• COMP 322 Module 1 handout, Chapter 12

2

COMP 322, Spring 2013 (V.Sarkar)

Phasers: a unified construct for barrier
and point-to-point synchronization (Recap)

• HJ phasers unify barriers with point-to-point synchronization

• Examples in Lecture 14 motivated the need for “point-to-point”
synchronization
— With barriers, phase i of a task waits for all tasks associated with the

same barrier to complete phase i-1

— With phasers, phase i of a task can select a subset of tasks to wait for

• Phaser properties
—Support for barrier and point-to-point synchronization
—Support for dynamic parallelism --- the ability for tasks to drop phaser

registrations on termination (end), and for new tasks to add phaser
registrations (async phased)

—A task may be registered on multiple phasers in different modes
—Deadlock freedom --- a next operation will not lead to a situation where

all active tasks are blocked indefinitely
—Support for phaser accumulators --- reductions that can be performed

with phasers

3

COMP 322, Spring 2013 (V.Sarkar)

Simple Example with Four Async Tasks
and One Phaser (Listing 43)

1. finish {

2. ph = new phaser(); // Default mode is SIG_WAIT

3. async phased(ph<phaserMode.SIG>){ //A1 (SIG mode)

4. doA1Phase1(); next;

5. doA1Phase2(); }

6. async phased { //A2 (default SIG_WAIT mode from parent)

7. doA2Phase1(); next;

8. doA2Phase2(); }

9. async phased { //A3 (default SIG_WAIT mode from parent)

10. doA3Phase1(); next;

11. doA3Phase2(); }

12. async phased(ph<phaserMode.WAIT>){ //A4 (WAIT mode)

13. doA4Phase1(); next; doA4Phase2(); }

14. }

4

COMP 322, Spring 2013 (V.Sarkar)

Simple Example with Four Async Tasks
and One Phaser (Figure 48)

5

Semantics of next depends on registration mode
SIG_WAIT: next = signal + wait
SIG: next = signal
WAIT: next = wait

signal

wait
next

SIG SIG_WAIT SIG_WAIT WAIT

 A master thread (worker) gathers all signals and broadcasts a barrier completion

COMP 322, Spring 2013 (V.Sarkar)

• Phaser allocation
—phaser ph = new phaser(mode);

– Phaser ph is allocated with registration mode
– Phaser lifetime is limited to scope of Immediately Enclosing Finish (IEF)

• Registration Modes
— phaserMode.SIG, phaserMode.WAIT, phaserMode.SIG_WAIT, phaserMode.SIG_WAIT_SINGLE

– NOTE: phaser WAIT is unrelated to Java wait/notify (which we will study later)

• Phaser registration
—async phased (ph1<mode1>, ph2<mode2>, …) <stmt>

– Spawned task is registered with ph1 in mode1, ph2 in mode2, …
– Child task’s capabilities must be subset of parent’s
– async phased <stmt> propagates all of parent’s phaser registrations to child

• Synchronization
—next;

– Advance each phaser that current task is registered on to its next phase
– Semantics depends on registration mode
– Barrier is a special case of phaser, which is why next is used for both

Summary of Phaser Construct

6

COMP 322, Spring 2013 (V.Sarkar)

So, what is a phaser
and how does it work?

• A phaser is a synchronization object --- you can allocate as many phasers
as you choose, and also build arrays/collections of phasers

• The task that allocates a phaser is automatically registered on the phaser
in the mode specified in the constructor (SIG_WAIT is the default mode)

• A task can be registered on multiple phasers in different modes, specified
in its “async phased” clause or due to its phaser allocations

• A “next” operation performs all signal operations followed by all wait
operations, according to the task’s phaser registrations
— Ordering of signal-wait avoids deadlock
— Degenerates gracefully when wait set or signal set is empty

• A registration on phaser ph in mode m can only be included in “async
phased” if the parent was also registered on ph with mode m (capability
rule)

• Phaser lifetime is limited to scope of Immediately Enclosing Finish (IEF) for
the allocation i.e., if phaser ph is allocated in finish scope F, then the task
executing F must drop any registration that it has on ph when reaching the
end-finish point for F

7

COMP 322, Spring 2013 (V.Sarkar)

Capability Hierarchy

• A task can be registered in one of four modes with respect to a
phaser: SIG_WAIT_SINGLE, SIG_WAIT, SIG, or WAIT. The mode
defines the set of capabilities — signal, wait, single — that the task
has with respect to the phaser. The subset relationship defines a
natural hierarchy of the registration modes. A task can drop (but
not add) capabilities after initialization.

SIG_WAIT_SINGLE = { signal, wait, single }

SIG_WAIT = { signal, wait }

SIG = { signal } WAIT = { wait }

8

COMP 322, Spring 2013 (V.Sarkar)

Left-Right Neighbor Synchronization
Example for m=3 (Listing 46)

9

// Task T0

COMP 322, Spring 2013 (V.Sarkar)

Computation Graph for m=3 example
(Figure 49)

10 Let's try another phaser example in Worksheet 15!

1,2,3,4

6

11

16

7-signal 7-wait

12-signal

17-signal

12-wait

17-wait

ph1.next
-start(0à1)

ph1.next
-end(0à1)

ph2.next
-start(0à1)

ph2.next
-end(0à1)

ph3.next
-start(0à1)

ph3.next
-end(0à1)

8

13

18

20-drop 20-end-finish

spawn continue signal wait join

COMP 322, Spring 2013 (V.Sarkar)

Adding Phaser Operations to the
Computation Graph

CG node = step
Step boundaries are induced by continuation points
• async: source of a spawn edge

• end-finish: destination of join edges

• future.get(): destination of a join edge

• signal, drop: source of signal edges

• wait: destination of wait edges
• next: modeled as signal + wait
CG also includes an unbounded set of pairs of phase transition nodes

for each phaser ph allocated during program execution

• ph.next-start(iài+1) and ph.next-end(iài+1)

11

COMP 322, Spring 2013 (V.Sarkar)

Adding Phaser Operations to the
Computation Graph (contd)

CG edges enforce ordering constraints among the nodes

• continue edges capture sequencing of steps within a task
• spawn edges connect parent tasks to child async tasks

• join edges connect descendant tasks to their Immediately
Enclosing Finish (IEF) operations and to get() operations for future
tasks

• signal edges connect each signal or drop operation to the
corresponding phase transition node, ph.next-start(iài+1)

• wait edges connect each phase transition node, ph.next-
end(iài+1) to corresponding wait or next operations

• single edges connect each phase transition node, ph.next-
start(iài+1) to the start of a single statement instance, and from
the end of that single statement to the phase transition node,
ph.next-end(iài+1)

12

COMP 322, Spring 2013 (V.Sarkar)

next-end

signal edges

wait edges

next-start

single-statement

Next-with-Single Statement
(for SIG_WAIT_SINGLE registration mode)

 next <single-stmt> is a
barrier in which single-
stmt is performed
exactly once after all
tasks have completed
the previous phase
and before any task
begins its next phase.

 Modeling next-with-single
in the Computation Graph

13

1. double[] gVal=new double[n+2]; double[] gNew=new double[n+2];

2. gVal[n+1] = 1; gNew[n+1] = 1;

3. phaser ph = new phaser[n+2];

4. finish { // phasers must be allocated in finish scope

5. forall(point [i]:[0:n+1]) ph[i] = new phaser();

6. forasync(point [j]:[1:n]) phased(ph[j]<phaserMode.SIG>,

7. ph[j-1]<phaserMode.WAIT>,ph[j+1]<phaserMode.WAIT>){

8. double[] myVal = gVal; double[] myNew = gNew; // Local pointers

9. for (point [iter] : [0:numIters-1]) {

10. myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;

11. next; // Point-to-point synchronization

12. // Swap myVal and myNew

13. double[] temp=myVal; myVal=myNew; myNew=temp;

14. // myNew becomes input array for next iter

15. } // for-iter

16. } // forasync-j

17.} // finish

COMP 322, Spring 2013 (V.Sarkar)

One-Dimensional Iterative Averaging with
Point-to-Point Synchronization (w/o chunking)

14

iter = i

iter = i+1

COMP 322, Spring 2013 (V.Sarkar)

forall barrier is just an implicit phaser
1. forall (point[i,j] : [iLo:iHi,jLo:jHi]) {

2. S1; next; S2; next{...}

3. }

is equivalent to

4. finish {

5. // Implicit phaser for forall barrier

6. phaser ph = new phaser(phaserMode.SIG_WAIT_SINGLE);

7. forasync(point[i,j] : [iLo:iHi,jLo:jHi])

8. phased(phaserMode.SIG_WAIT_SINGLE){

9. S1; next; S2; next{...}

10. } // next statements in async refer to ph

11. }

15

COMP 322, Spring 2013 (V.Sarkar)

Outline of Today’s Lecture

• Point-to-Point Synchronization with Phasers

• Signal statement and split-phase barriers

Acknowledgments

• COMP 322 Module 1 handout, Chapter 12

16

COMP 322, Spring 2013 (V.Sarkar)

Signal statement
• When a task T performs a signal operation, it notifies all the

phasers it is registered on that it has completed all the work
expected by other tasks in the current phase (“shared” work).
—Since signal is a non-blocking operation, an early execution of signal

cannot create a deadlock.

• Later, when T performs a next operation, the next degenerates to a
wait since a signal has already been performed in the current
phase.

• The execution of “local work” between signal and next is
performed during phase transition
—Referred to as a “split-phase barrier” or “fuzzy barrier”

17

COMP 322, Spring 2013 (V.Sarkar)

Example of Split-Phase Barrier
(Listing 50)

18

COMP 322, Spring 2013 (V.Sarkar)

Computation Graph for Split-Phase Barrier Example
(without async and finish nodes and edges)

4

11

5-signal 7-wait

12-signal 14-wait

ph.next
-start(0à1)

ph.next
-end(0à1)

8

15

spawn continue signal wait join

6

13

19

COMP 322, Spring 2013 (V.Sarkar)

Full Computation Graph for Split-Phase
Barrier Example (Figure 52)

2

4

11

5-signal 7-wait

12-signal 14-wait

ph.next
-start(0à1)

ph.next
-end(0à1)

8

15

20-drop 20-end-finish

spawn continue signal wait join

6

13

20

COMP 322, Spring 2013 (V.Sarkar)

Worksheet #15:
Left-Right Neighbor Synchronization using Phasers

COMP 322, Spring 2011 (V.Sarkar)!18

Barrier & P-2-P Sync for 1-D
Averaging!

doPhase1(i)

doPhase2(i)

 i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8

1. finish {
2. phaser[] ph = new phaser[m+2]; // array of phaser objects
3. for(point [i]:[0:m+1]) ph[i] = new phaser();
4. for(point [i] : [1:m])
5. async phased(ph[i-1]<...>, ph[i+1]<...>, ph[i] <...>) {
6. doPhase1(i);
7. next;
8. doPhase2(i);
9. }
10.}

21

Name 1: ___________________

Name 2: ___________________

Complete the phased clause below to implement the left-right
neighbor synchronization shown above

