
COMP 322: Fundamentals of
Parallel Programming

Lecture 3: Computation Graphs,
Abstract Performance Metrics

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 3 11 January 2013

COMP 322, Spring 2013 (V.Sarkar)

Announcements
• Coursera forum on HJ Environment and Setup Issues

— Please post your issues, and also respond to postings by other students when
you can help

• Instructor’s office hours are during 2pm - 3pm on MWF
— Please stop by if you have problems with any of the following

– Accessing the Module 1 handout
– Using the turnin script
– You did not receive any email sent to comp322-all

• Homework 1 has been posted
— Contains written and programming components
— Due by 5pm on Wednesday, Jan 23rd
— Must be submitted using “turnin” script introduced in Lab 1

– In case of problems, email a zip file to comp322-staff at mailman.rice.edu
before the deadline

— See course web site for penalties for late submissions

2

COMP 322, Spring 2013 (V.Sarkar)3

Complexity Measures for Computation Graphs
(Recap)

Define

• TIME(N) = execution time of node N

• WORK(G) = sum of TIME(N), for all nodes N in CG G
—WORK(G) is the total work to be performed in G

• CPL(G) = length of a longest path in CG G, when
adding up execution times of all nodes in the path
—Such paths are called critical paths
—CPL(G) is the length of these paths (critical path
length)

—CPL(G) is also the smallest possible execution time
for the computation graph

COMP 322, Spring 2013 (V.Sarkar)4

Ideal Parallelism (Recap)

Define ideal parallelism of
Computation Graph G as the
ratio, WORK(G)/CPL(G)

Ideal Parallelism is independent
of the number of processors
that the program executes on,
and only depends on the
computation graph

1

1

1

4 1 4

1 1 1 1

31 1 1

1 1

1

1

COMP 322, Spring 2013 (V.Sarkar)5

Solution to Worksheet #2: what is the critical path length
and ideal parallelism of this graph?

• time(N) is labeled for all nodes N in the graph
1

1

1

4
WORK(G) = 26

CPL(G) = 11

Ideal Parallelism
= WORK(G)/CPL(G)
= 26 / 11 ~ 2.36

41

1 1 1

31

1

1

1

1

1

1

1

CPL(G) = length of a longest path in computation graph G

COMP 322, Spring 2013 (V.Sarkar)6

Scheduling of a Computation Graph on a
fixed number of processors: Example

1

1

1

4 41

1 1 1

31

1

1

1

1

1

1

1

A
Start
time

Proc
1

Proc
2

Proc
3

0 A
1 B
2 C N
3 D N I
4 D N J
5 D N K
6 D Q L
7 E R M
8 F R O
9 G R P
10 H
11

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

COMP 322, Spring 2013 (V.Sarkar)

Scheduling of a Computation Graph on a
fixed number of processors, P

• Assume that node N takes TIME(N) regardless of which
processor it executes on, and that there is no overhead for
creating parallel tasks

• A schedule specifies the following for each node
—START(N) = start time
—PROC(N) = index of processor in range 1...P

such that
—START(i) + TIME(i) <= START(j), for all CG edges from i

to j (Precedence constraint)
—A node occupies consecutive time slots in a processor (Non-

preemption constraint)
—All nodes assigned to the same processor occupy distinct

time slots (Resource constraint)

7

COMP 322, Spring 2013 (V.Sarkar)8

Lower Bounds on Execution Time of
Schedules

• Let TP = execution time of a schedule for
computation graph G on P processors
—Can be different for different schedules

• Lower bounds for all greedy schedules
—Capacity bound: TP ≥ WORK(G)/P

—Critical path bound: TP ≥ CPL(G)

• Putting them together
—TP ≥ max(WORK(G)/P, CPL(G))

COMP 322, Spring 2013 (V.Sarkar)9

Greedy Schedule
• A greedy schedule is one that never forces a
processor to be idle when one or more nodes are ready
for execution
• A node is ready for execution if all its predecessors
have been executed
• Observations

—T1 = WORK(G), for all greedy schedules
—T∞ = CPL(G), for all greedy schedules

COMP 322, Spring 2013 (V.Sarkar)10

Upper Bound on Execution Time of Greedy
Schedules

Proof sketch:
Define a time step to be complete if

≥ P nodes are ready at that time,
or incomplete otherwise

complete time steps ≤ WORK(G)/P

incomplete time steps ≤ CPL(G)

Theorem [Graham ’66]. Any
greedy scheduler achieves

TP ≤ WORK(G)/P + CPL(G)

Start
time

Proc
1

Proc
2

Proc
3

0 A
1 B
2 C N
3 D N I
4 D N J
5 D N K
6 D Q L
7 E R M
8 F R O
9 G R P
10 H
11

COMP 322, Spring 2013 (V.Sarkar)11

What are the best-case and worst-case schedules
that we can obtain for this example on 2 processors?

1

1

10

A

B C

F

1

1 110 1D E

•WORK(G) = 24

•CPL(G) = 12

•For P=2, WORK(G)/P = 12

•Lower bound = max(12,12) = 12

•Upper bound = 12 + 12 = 24

•Best (13) and worst (14) values

for T2 are in the range, 12 ... 24

Start
time

Proc 1 Proc 2

0 A
1 B F
2 D F
3 D F
4 D F
5 D F
6 D F
7 D F
8 D F
9 D F
10 D F
11 D C
12 E
13

Start
time

Proc 1 Proc 2

0 A
1 F B
2 F C
3 F E
4 F D
5 F D
6 F D
7 F D
8 F D
9 F D
10 F D
11 D
12 D
13 D
14

Best case, T2 = 13 Worst case, T2 = 14

COMP 322, Spring 2013 (V.Sarkar)12

Bounding the performance of Greedy Schedulers

Combine lower and upper bounds to get

max(WORK(G)/P, CPL(G)) ≤ TP ≤ WORK(G)/P + CPL(G)

Corollary 1: Any greedy scheduler achieves execution
time TP that is within a factor of 2 of the optimal time
(since max(a,b) and (a+b) are within a factor of 2 of
each other, for any a ≥ 0,b ≥ 0).

Corollary 2: Lower and upper bounds approach the
same value whenever

• There’s lots of parallelism, WORK(G)/CPL(G) >> P

• Or there’s little parallelism, WORK(G)/CPL(G) << P

COMP 322, Spring 2013 (V.Sarkar)

Strong Scaling and Speedup

• Define Speedup(P) = T1 / TP

—Factor by which the use of P processors speeds
up execution time relative to 1 processor, for a
fixed input size

—For ideal executions without overhead, 1 <=
Speedup(P) <= P

—Linear speedup
– When Speedup(P) = k*P, for some constant k,

0 < k < 1

• Referred to as “strong scaling” because input size
is fixed

13

COMP 322, Spring 2013 (V.Sarkar)14

Reduction Tree Schema for computing
Array Sum in parallel

Assume input array size = S, and each add takes 1 unit of time:

• WORK(G) = S-1

• CPL(G) = log2(S)

• Assume TP = WORK(G)/P + CPL(G) = (S-1)/P + log2(S)

• Within a factor of 2 of any schedule’s execution time

What is the speedup
for this parallel
algorithm?
Time for worksheet #3!

COMP 322, Spring 2013 (V.Sarkar)15

Algorithm based on updates to array

Observations:

• This algorithm overwrites X (make a copy if X is needed later)

• stride = distance between array subscript inputs for each addition
• size = number of additions that can be executed in parallel in each

level (stage)

COMP 322, Spring 2013 (V.Sarkar)16

Async-Finish Parallel Program for Array Sum
 (for X.length = 8)

1.finish { //STAGE 1: stride = 1, size = 4 parallel additions

2. async X[0]+=X[1]; async X[2]+=X[3];

3. async X[4]+=X[5]; async X[6]+=X[7];

4.}

5.finish { //STAGE 2: stride = 2, size = 2 parallel additions

6. async X[0]+=X[2]; async X[4]+=X[6];

7.}

8.finish { //STAGE 3: stride = 4, size = 1 parallel additions

9. async X[0]+=X[4];

10.}

11.// Final sum is now in X[0]

COMP 322, Spring 2013 (V.Sarkar)17

Generalization to arbitrary sized arrays
(ArraySum1)

1.for (int stride = 1; stride < X.length ; stride *= 2) {

2. // Compute size = number of adds to be performed in stride

3. int size=ceilDiv(X.length,2*stride);

4. finish for(int i = 0; i < size; i++)

5. async {

6. if ((2*i+1)*stride < X.length)

7. X[2*i*stride] += X[(2*i+1)*stride];

8. } // finish-for-async

9.} // for

10.

11.// Divide x by y, and round up to next largest int

12.static int ceilDiv(int x, int y) { return (x+y-1) / y; }

COMP 322, Spring 2013 (V.Sarkar)18

Computation Graph for ArraySum1

COMP 322, Spring 2013 (V.Sarkar)19

HJ Abstract Performance Metrics
• Basic Idea

—Count operations of interest, as in big-O analysis
—Abstraction ignores overheads that occur on real systems

• Calls to perf.doWork()
—Programmer inserts calls of the form, perf.doWork(N),

within a step to indicate abstraction execution of N
application-specific abstract operations
– e.g., adds, compares, stencil ops, data structure ops

—Multiple calls add to the execution time of the step

• Enabled by selecting “Show Abstract Execution Metrics” in
DrHJ compiler options (or -perf=true runtime option)
—If an HJ program is executed with this option, abstract

metrics are printed at end of program execution with
WORK(G), CPL(G), Ideal Speedup = WORK(G)/ CPL(G)

COMP 322, Spring 2013 (V.Sarkar)20

Inserting call to perf.doWork() in
ArraySum1

1.for (int stride = 1; stride < X.length ; stride *= 2) {

2. // Compute size = number of adds to be performed in stride

3. int size=ceilDiv(X.length,2*stride);

4. finish for(int i = 0; i < size; i++)

5. async {

6. if ((2*i+1)*stride < X.length) {

7. perf.doWork(1);

8. X[2*i*stride] += X[(2*i+1)*stride];

9. }

10. } // finish-for-async

11.} // for

12.

COMP 322, Spring 2013 (V.Sarkar)21

Worksheet #3: Strong Scaling for Array Sum

• Assume T(S,P) ~ WORK(G,S)/P + CPL(G,S) = (S-1)/P + log2(S) for a
parallel array sum computation

• Strong scaling
—Assume S = 1024 ==> log2(S) = 10

—Compute Speedup(P) for 10, 100, 1000 processors
– T(P) = 1023/P + 10

– Speedup(10) = T(1)/T(10) =
– Speedup(100) = T(1)/T(100) =

– Speedup(1000) = T(1)/T(1000) =
—Why is it worse than linear?

Name 1: ___________________ Name 2: ___________________

