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Announcements
• Coursera forum on HJ Environment and Setup Issues

— Please post your issues, and also respond to postings by other students when 
you can help

• Instructor’s office hours are during 2pm - 3pm on MWF
— Please stop by if you have problems with any of the following

– Accessing the Module 1 handout
– Using the turnin script
– You did not receive any email sent to comp322-all

• Homework 1 has been posted
— Contains written and programming components
— Due by 5pm on Wednesday, Jan 23rd
— Must be submitted using “turnin” script introduced in Lab 1

– In case of problems, email a zip file to comp322-staff at mailman.rice.edu 
before the deadline

— See course web site for penalties for late submissions
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Complexity Measures for Computation Graphs 
(Recap)

Define

• TIME(N) = execution time of node N

• WORK(G) = sum of TIME(N), for all nodes N in CG G
—WORK(G) is the total work to be performed in G

• CPL(G) = length of a longest path in CG G, when 
adding up execution times of all nodes in the path
—Such paths are called critical paths
—CPL(G) is the length of these paths (critical path 
length)

—CPL(G) is also the smallest possible execution time 
for the computation graph
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Ideal Parallelism (Recap)

Define ideal parallelism of 
Computation Graph G as the 
ratio, WORK(G)/CPL(G)

Ideal Parallelism is independent 
of the number of processors 
that the program executes on, 
and only depends on the 
computation graph
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Solution to Worksheet #2: what is the critical path length
and ideal parallelism of this graph?

• time(N) is labeled for all nodes N in the graph
1

1
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4
WORK(G) = 26

CPL(G) = 11

Ideal Parallelism 
= WORK(G)/CPL(G) 
= 26 / 11 ~ 2.36   
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CPL(G) = length of a longest path in computation graph G
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Scheduling of a Computation Graph on a 
fixed number of processors: Example
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Scheduling of a Computation Graph on a 
fixed number of processors, P

• Assume that node N takes TIME(N) regardless of which 
processor it executes on, and that there is no overhead for 
creating parallel tasks

• A schedule specifies the following for each node
—START(N) = start time
—PROC(N) = index of processor in range 1...P

such that
—START(i) + TIME(i) <= START(j), for all CG edges from i 

to j (Precedence constraint)
—A node occupies consecutive time slots in a processor (Non-

preemption constraint)
—All nodes assigned to the same processor occupy distinct 

time slots (Resource constraint)
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Lower Bounds on Execution Time of 
Schedules

• Let TP = execution time of a schedule for 
computation graph G on P processors
—Can be different for different schedules

• Lower bounds for all greedy schedules
—Capacity bound: TP  ≥ WORK(G)/P

—Critical path bound: TP  ≥ CPL(G)

• Putting them together
—TP  ≥ max(WORK(G)/P, CPL(G))
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Greedy Schedule
• A greedy schedule is one that never forces a 
processor to be idle when one or more nodes are ready 
for execution 
• A node is ready for execution if all its predecessors 
have been executed
• Observations

—T1 = WORK(G), for all greedy schedules
—T∞ = CPL(G), for all greedy schedules
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Upper Bound on Execution Time of Greedy 
Schedules 

Proof sketch:
Define a time step to be complete if 

≥ P nodes are ready at that time, 
or incomplete otherwise

# complete time steps ≤ WORK(G)/P

# incomplete time steps ≤ CPL(G) 

Theorem [Graham ’66]. Any 
greedy scheduler achieves

TP ≤ WORK(G)/P + CPL(G)

Start 
time

Proc 
1

Proc 
2

Proc 
3

0 A
1 B
2 C N
3 D N I
4 D N J
5 D N K
6 D Q L
7 E R M
8 F R O
9 G R P
10 H
11



COMP 322, Spring 2013 (V.Sarkar)11

What are the best-case and worst-case schedules 
that we can obtain for this example on 2 processors?
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•WORK(G) = 24

•CPL(G) = 12

•For P=2, WORK(G)/P = 12

•Lower bound = max(12,12) = 12

•Upper bound = 12 + 12 = 24

•Best (13) and worst (14) values 
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Bounding the performance of Greedy Schedulers

Combine lower and upper bounds to get 

max(WORK(G)/P, CPL(G)) ≤ TP ≤ WORK(G)/P + CPL(G)

Corollary 1: Any greedy scheduler achieves execution 
time TP that is within a factor of 2 of the optimal time 
(since max(a,b) and (a+b) are within a factor of 2 of 
each other, for any a ≥ 0,b ≥ 0 ).

Corollary 2:  Lower and upper bounds approach the 
same value whenever 

• There’s lots of parallelism, WORK(G)/CPL(G) >> P

• Or there’s little parallelism,  WORK(G)/CPL(G) << P  
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Strong Scaling and Speedup

• Define Speedup(P) = T1 / TP

—Factor by which the use of P processors speeds 
up execution time relative to 1 processor, for a 
fixed input size

—For ideal executions without overhead, 1 <= 
Speedup(P) <= P

—Linear speedup 
– When Speedup(P) = k*P, for some constant k, 

0 < k < 1

• Referred to as “strong scaling” because input size 
is fixed
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Reduction Tree Schema for computing 
Array Sum in parallel

Assume input array size = S, and each add takes 1 unit of time:

• WORK(G) = S-1

• CPL(G) = log2(S)

• Assume TP = WORK(G)/P + CPL(G) = (S-1)/P + log2(S)

• Within a factor of 2 of any schedule’s execution time

What is the speedup 
for this parallel 
algorithm?
Time for worksheet #3!
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Algorithm based on updates to array

Observations:

• This algorithm overwrites X (make a copy if X is needed later)

• stride = distance between array subscript inputs for each addition
• size = number of additions that can be executed in parallel in each 

level (stage)
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Async-Finish Parallel Program for Array Sum
 (for X.length = 8)

1.finish { //STAGE 1: stride = 1, size = 4 parallel additions

2.  async X[0]+=X[1]; async X[2]+=X[3]; 

3.  async X[4]+=X[5]; async X[6]+=X[7]; 

4.}

5.finish { //STAGE 2: stride = 2, size = 2 parallel additions

6.  async X[0]+=X[2]; async X[4]+=X[6]; 

7.}

8.finish { //STAGE 3: stride = 4, size = 1 parallel additions

9.  async X[0]+=X[4]; 

10.}

11.// Final sum is now in X[0]
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Generalization to arbitrary sized arrays
(ArraySum1)

1.for ( int stride = 1; stride < X.length ; stride *= 2 ) {

2.  // Compute size = number of adds to be performed in stride

3.  int size=ceilDiv(X.length,2*stride);

4.  finish for(int i = 0; i < size; i++)

5.    async {

6.      if ( (2*i+1)*stride < X.length )

7.        X[2*i*stride] += X[(2*i+1)*stride]; 

8.    } // finish-for-async

9.} // for

10. 

11.// Divide x by y, and round up to next largest int

12.static int ceilDiv(int x, int y) { return (x+y-1) / y; }
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Computation Graph for ArraySum1
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HJ Abstract Performance Metrics
• Basic Idea

—Count operations of interest, as in big-O analysis
—Abstraction ignores overheads that occur on real systems

• Calls to perf.doWork()
—Programmer inserts calls of the form, perf.doWork(N), 

within a step to indicate abstraction execution of N 
application-specific abstract operations 
– e.g., adds, compares, stencil ops, data structure ops

—Multiple calls add to the execution time of the step

• Enabled by selecting “Show Abstract Execution Metrics” in 
DrHJ compiler options (or -perf=true runtime option)
—If an HJ program is executed with this option, abstract 

metrics are printed at end of program execution with 
WORK(G), CPL(G), Ideal Speedup = WORK(G)/ CPL(G)
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Inserting call to perf.doWork() in 
ArraySum1

1.for ( int stride = 1; stride < X.length ; stride *= 2 ) {

2.  // Compute size = number of adds to be performed in stride

3.  int size=ceilDiv(X.length,2*stride);

4.  finish for(int i = 0; i < size; i++)

5.    async {

6.      if ( (2*i+1)*stride < X.length ) {

7.        perf.doWork(1);

8.        X[2*i*stride] += X[(2*i+1)*stride]; 

9.      }

10.    } // finish-for-async

11.} // for

12. 
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Worksheet #3: Strong Scaling for Array Sum

• Assume T(S,P) ~ WORK(G,S)/P + CPL(G,S) = (S-1)/P + log2(S) for a  
parallel array sum computation

• Strong scaling
—Assume S = 1024 ==> log2(S) = 10

—Compute Speedup(P) for 10, 100, 1000 processors
– T(P) = 1023/P + 10

– Speedup(10) = T(1)/T(10) = 
– Speedup(100) = T(1)/T(100) = 

– Speedup(1000) = T(1)/T(1000) = 
—Why is it worse than linear?

Name 1: ___________________          Name 2: ___________________


