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Worksheet #7 solution: Why must 
Future References be declared as final?

1. static future<int> f1=null; 

2. static future<int> f2=null;

3. 

4. void main(String[] args) {

5.   f1 = async<int> {return a1();};

6.   f2 = async<int> {return a2();};

7. }

8. 

9. int a1() { // Task T1

10.  while (f2 == null); // spin loop

11.  return f2.get(); //T1 waits for T2

12. }

13. 

14. int a2() { // Task T2

15.  while (f1 == null); // spin loop

16.  return f1.get(); //T2 waits for T1

17. }

1) Consider the code on the right with 
futures declared as non-final static 
fields (though that’s not permitted in 
HJ). Can a deadlock situation occur 
between tasks T1 and T2 with this 
code?  Explain why or why not.

Yes, a deadlock can occur when future 
f1 does f2.get() and future f2 does 
f1.get().

WARNING: such “spin” loops are an 
example of bad parallel programming 
practice in application code (they 
should only be used by expert systems 
programmers, and even then sparingly)
Their semantics depends on the 
memory model.  In HJ’s memory model, 
there’s no guarantee that the above 
spin loops will ever terminate.  

deadlock
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Worksheet #7 solution: Why must 
Future References be declared as final 

1. void main(String[] args) {

2.   final future<int> f1 = 

3.     async<int> {return a1();};

4.   final future<int> f2 = 

5.     async<int> {return a2(f1);};

6. }

7. 

8.  int a1() {  

9.  // Task T1 cannot receive a 

10. // reference to f2

11. 

12. }

13. 

14. int a2(future<int> f1) { 

15. // Task T2 can receive a reference

16. // to f1 but that won’t cause

17. // a deadlock.

18. ... f1.get() ...

19. }

2) Now consider a modified version of 
the above code in which futures are 
declared as final local variables (which 
is permitted in HJ).  Can you add get() 
operations to methods a1() and a2() to 
create a deadlock between tasks T1 and 
T2 with this code?  Explain why or why 
not.

No, the final declarations make it 
impossible for future f1’s task (T1) to 
receive a reference to f2.

Will your answer be different if f1 and f2 
are final fields in objects or final static 
fields?

No.
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Outline of Today’s Lecture
• Parallel N-Queens Algorithm

• Parallel Prefix Sum Algorithm
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The N-Queens Problem
How can we place n queens on an n×n 
chessboard so that no two queens can capture 
each other?
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A queen can move any number of 
squares horizontally, vertically, and 
diagonally.
Here, the possible target squares of the 
queen Q are marked with an x.
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Decision Trees
• In any solution of the n-queens problem, there must be exactly 

one queen in each column of the board. 

• Otherwise, the two queens in the same column could capture each 
other.

• Therefore, we can describe the solution of this problem as a 
sequence of n decisions: 

• Decision 1: Place a queen in the first column.

• Decision 2: Place a queen in the second column.

• .
.
.

Decision n: Place a queen in the n-th column.

•  Since there are multiple choices for each decision, we get a 
“decision tree”

6
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Backtracking in Decision Trees
• There are problems that require us to perform an exhaustive 

search of all possible sequences of decisions in order to find the 
solution. 

• We can solve such problems by constructing the complete 
decision tree and then find a path from its root to a leaf that 
corresponds to a solution of the problem 

• In many cases, the efficiency of this procedure can be 
dramatically increased by a technique called backtracking (depth-
first search). 

7
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Backtracking and Decision Tree states
• Idea: Start at the root of the decision tree and move downwards, 

that is, make a sequence of decisions, until you either reach a 
solution or you enter a state from where no solution can be 
reached by any further sequence of decisions.

• In the latter case, backtrack to the parent of the current state and 
take a different path downwards from there. If all paths from this 
state have already been explored, backtrack to its parent.

• Continue this procedure until you find a solution (or all solutions), 
or establish that no solution exists.

• A state in the decision tree can be encoded as an array, a[0..c-1] 
for c columns, where a[i] = row position of queen in column i.

8
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Backtracking in Decision Trees
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place 1st queen

place 2nd queen

place 3rd queen

place 4th queen

empty board a = [ ]

a = [0] a = [1]

a = [0 2] a = [0 3] a = [1 3]

a = [0 3 1]
a = [1 3 0]

a = [1 3 0 2]
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Sequential solution for NQueens
(counting all solutions) 

1.  static int count;

2.  . . .

3.  count = 0;

4.  nqueens_kernel(new int[0], 0);

5.  System.out.println(“No. of solutions = “ + count);

6.  . . .

7.  void nqueens_kernel(int [] a, int depth) {

8.    if (size == depth) count++;

9.    else

10.     /* try each possible position for queen at depth */

11.     for (int i =  0; i < size; i++) {

12.       /* allocate a temporary array and copy array a into it */

13.       int [] b = new int [depth+1];

14.       System.arraycopy(a, 0, b, 0, depth);

15.       b[depth] = i;

16.       if (ok(depth+1,b)) nqueens_kernel(b, depth+1);

17.     } // for-async

18. } // nqueens_kernel()

10
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Parallel Solution to NQueens with Finish 
Accumulators (counting all solutions)

1.  static accumulator count;

2.  . . .

3.  count = accumulator.factory.accumulator(SUM, int.class);

4.  finish(a) nqueens_kernel(new int[0], 0);

5.  System.out.println(“No. of solutions = “ + count.get().intValue());

6.  . . .

7.  void nqueens_kernel(int [] a, int depth) {

8.    if (size == depth) count.put(1);

9.    else

10.     /* try each possible position for queen at depth */

11.     for (int i =  0; i < size; i++) async {

12.       /* allocate a temporary array and copy array a into it */

13.       int [] b = new int [depth+1];

14.       System.arraycopy(a, 0, b, 0, depth);

15.       b[depth] = i;

16.       if (ok(depth+1,b)) nqueens_kernel(b, depth+1);

17.     } // for-async

18. } // nqueens_kernel()

11
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Outline of Today’s Lecture
• Parallel N-Queens Algorithm

• Parallel Prefix Sum Algorithm
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Prefix Sum (Scan) Problem Statement
Given input array A, compute output array X as follows

• The above is an inclusive prefix sum since X[i] includes A[i]

• For an exclusive prefix sum, perform the summation for 0 <=j <i

• It is easy to see that prefix sums can be computed sequentially in 
O(n) time

// Copy input array A into output array X

X = new int[A.length]; System.arraycopy(A,0,X,0,A.length);

// Update array X with prefix sums

for (int i=1 ; i < X.length ; i++ ) X[i] += X[i-1];
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An Inefficient Parallel Prefix Sum program 
1. finish {

2.  for (int i=0 ; i < X.length ; i++ ) 

3.    // computeSum() adds A[0..i] in parallel

4.    async X[i] = computeSum(A, 0, i);

5. }

Observations:

• Critical path length, CPL = O(log n)

• Total number of operations, WORK = O(n2)

• With P = O(n) processors, the best execution time that you can 
achieve is TP = max(CPL, WORK/P) = O(n), which is no better than 
sequential!
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How can we do better?
Observation: each prefix sum can be decomposed into reusable 

terms of power-of-2-size e.g.

Approach: 

• Combine reduction tree idea from Parallel Array Sum with partial 
sum idea from Sequential Prefix Sum

• Use an “upward sweep” to perform parallel reduction, while 
storing partial sum terms in tree nodes

• Use a “downward sweep” to compute prefix sums while reusing 
partial sum terms stored in upward sweep
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Parallel Prefix Sum: Upward Sweep
(Alternate formulation to Lecture 10)

Upward sweep is just like Parallel Reduction, except that partial sums 
are also stored along the way

1. Receive values from left and right children
2. Compute left+right and store in box
3. Send left+right value to parent 15

2

Input array, A:

4

6
15

5 4

9



1. Receive value from parent (root receives 0)
2. Send parent’s value to LEFT child (prefix sum for elements to left of left 

child’s subtree)
3. Send parent’s value+ left child’s box value to RIGHT child (prefix sum for 

elements to left of right child’s subtree)
4. Add A[i] to get inclusive prefix sum

+ A[i]

Exclusive prefix sums
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Parallel Prefix Sum: Downward Sweep
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Inclusive prefix sums
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Summary of Parallel Prefix Sum 
Algorithm

• Critical path length, CPL = O(log n)

• Total number of add operations, WORK = O(n)

• Optimal algorithm for P = O(n/log n) processors
—Adding more processors does not help

• Parallel Prefix Sum has several applications that go beyond 
computing the sum of array elements

• Parallel Prefix Sum can be used for any operation that is 
associative (need not be commutative)
—In contrast, finish accumulators require the operator to be both 

associative and commutative

How do associativity and commutativity make a difference?

Time for worksheet #8!
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Example Applications of Parallel Prefix 
Algorithm

• Prefix Max with Index of First Occurrence: given an input array A, 
output an array X of objects such that X[i].max is the maximum of 
elements A[0…i] and X[i].index contains the index of the first 
occurrence of X[i].max in A[0…i]
—Homework 2 includes this problem just for the entire array (not 

intermediate prefix “sums”)

• Filter and Packing of Strings: given an input array A identify 
elements that satisfy some desired property (e.g., uppercase), and 
pack them in a new output array.  (First create a 0/1 array for 
elements that satisfy the property, and then compute prefix sums 
to identify locations of elements to be packed.)

—Useful for parallelizing partitioning step in Parallel Quicksort algorithm 
(Approaches 2 and 3)
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Use of Prefix Sums to parallelize partition() in 
Quicksort (Approach 2, Summary of Listing 30)

1. partition(int[] A, int M, int N) { // choose pivot from M..N

2.  forall (point [k] : [0:N-M]) { // parallel loop

3.   lt[k] = (A[M+k] < A[pivot] ? 1 : 0);  // bit vector with < comparisons

4.   eq[k] = (A[M+k] == A[pivot] ? 1 : 0); // bit vector with = comparisons

5.   gt[k] = (A[M+k] > A[pivot] ? 1 : 0);  // bit vector with > comparisons

6.   buffer[k] = A[M+k];                   // Copy A[M..N] into buffer

7.  }

8.  Copy lt, eq, gt, into ltPS, eqPS, gtPS before step 9

9.  final int ltCount = computePrefixSums(ltPS); //update lt with prefix sums

10. final int eqCount = computePrefixSums(eqPS); //update eq with prefix sums

11. final int gtCount = computePrefixSums(gtPS); //update gt with prefix sums

12. // Parallel move from buffer into A

13. forall (point [k] : [0:N-M]) {

14.   if(lt[k]==1) A[M+ltPS[k]-1] = buffer[k];

15.   else if(eq[k]==1) A[M+ltCount+eqPS[k]-1] = buffer[k];

16.   else A[M+ltCount+eqCount+gtPS[k]-1] = buffer[k];

17.  }

18.  . . .

19.}  // partition

20
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Worksheet #8: Associativity and 
Commutativity

Name 1: ___________________          Name 2: ___________________

Finish accumulators can be used for any associative and commutative binary 
function. 
Parallel Prefix Sum algorithm can be used for any associative binary function.

A binary function f is associative if f(f(x,y),z) = f(x,f(y,z)).
A binary function f is commutative if f(x,y) = f(y,x).

For each of the following functions, indicate if it can be used in a finish 
accumulator or a parallel prefix sum algorithm or both or neither.

1) f(x,y) = x+y, for integers x, y

2) g(x,y) = (x+y)/2, for integers x, y

3) h(s1,s2) = concat(s1, s2) for strings s1, s2 e.g., h(“ab”,”cd”) = “abcd”

Use the space below for your answers.


