
COMP 322: Fundamentals of
Parallel Programming

Lecture 8: Parallel N-Queens algorithm,
Parallel Prefix Sum Algorithm

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 8 28 January 2013

COMP 322, Spring 2013 (V.Sarkar)2

Worksheet #7 solution: Why must
Future References be declared as final?

1. static future<int> f1=null;

2. static future<int> f2=null;

3.

4. void main(String[] args) {

5. f1 = async<int> {return a1();};

6. f2 = async<int> {return a2();};

7. }

8.

9. int a1() { // Task T1

10. while (f2 == null); // spin loop

11. return f2.get(); //T1 waits for T2

12. }

13.

14. int a2() { // Task T2

15. while (f1 == null); // spin loop

16. return f1.get(); //T2 waits for T1

17. }

1) Consider the code on the right with
futures declared as non-final static
fields (though that’s not permitted in
HJ). Can a deadlock situation occur
between tasks T1 and T2 with this
code? Explain why or why not.

Yes, a deadlock can occur when future
f1 does f2.get() and future f2 does
f1.get().

WARNING: such “spin” loops are an
example of bad parallel programming
practice in application code (they
should only be used by expert systems
programmers, and even then sparingly)
Their semantics depends on the
memory model. In HJ’s memory model,
there’s no guarantee that the above
spin loops will ever terminate.

deadlock

COMP 322, Spring 2013 (V.Sarkar)3

Worksheet #7 solution: Why must
Future References be declared as final

1. void main(String[] args) {

2. final future<int> f1 =

3. async<int> {return a1();};

4. final future<int> f2 =

5. async<int> {return a2(f1);};

6. }

7.

8. int a1() {

9. // Task T1 cannot receive a

10. // reference to f2

11.

12. }

13.

14. int a2(future<int> f1) {

15. // Task T2 can receive a reference

16. // to f1 but that won’t cause

17. // a deadlock.

18. ... f1.get() ...

19. }

2) Now consider a modified version of
the above code in which futures are
declared as final local variables (which
is permitted in HJ). Can you add get()
operations to methods a1() and a2() to
create a deadlock between tasks T1 and
T2 with this code? Explain why or why
not.

No, the final declarations make it
impossible for future f1’s task (T1) to
receive a reference to f2.

Will your answer be different if f1 and f2
are final fields in objects or final static
fields?

No.

COMP 322, Spring 2013 (V.Sarkar)

Outline of Today’s Lecture
• Parallel N-Queens Algorithm

• Parallel Prefix Sum Algorithm

Acknowledgments

• COMP 322 Module 1 handout, Chapter 6, Chapter 7

• Marc Pomplun, U.Mass Boston, CS 271, Introduction to Cognitive Science,
Lecture 17: Game-Playing Algorithms

—http://www.cs.umb.edu/~marc/cs271/cog11-10.ppt

• Prof. Kathy Yelick, UC Berkeley, CS 194 Lecture, Fall 2007
—http://www.cs.berkeley.edu/~yelick/cs194f07/lectures/lect09-dataparallel.pdf

4

COMP 322, Spring 2013 (V.Sarkar)

The N-Queens Problem
How can we place n queens on an n×n
chessboard so that no two queens can capture
each other?

Q
x
x
x

x
x

x

xx

x

xx

x
x

x
xx

x
x
x
xx

x
x

x
x

x
x

A queen can move any number of
squares horizontally, vertically, and
diagonally.
Here, the possible target squares of the
queen Q are marked with an x.

COMP 322, Spring 2013 (V.Sarkar)

Decision Trees
• In any solution of the n-queens problem, there must be exactly

one queen in each column of the board.

• Otherwise, the two queens in the same column could capture each
other.

• Therefore, we can describe the solution of this problem as a
sequence of n decisions:

• Decision 1: Place a queen in the first column.

• Decision 2: Place a queen in the second column.

• .
.
.

Decision n: Place a queen in the n-th column.

• Since there are multiple choices for each decision, we get a
“decision tree”

6

COMP 322, Spring 2013 (V.Sarkar)

Backtracking in Decision Trees
• There are problems that require us to perform an exhaustive

search of all possible sequences of decisions in order to find the
solution.

• We can solve such problems by constructing the complete
decision tree and then find a path from its root to a leaf that
corresponds to a solution of the problem

• In many cases, the efficiency of this procedure can be
dramatically increased by a technique called backtracking (depth-
first search).

7

COMP 322, Spring 2013 (V.Sarkar)

Backtracking and Decision Tree states
• Idea: Start at the root of the decision tree and move downwards,

that is, make a sequence of decisions, until you either reach a
solution or you enter a state from where no solution can be
reached by any further sequence of decisions.

• In the latter case, backtrack to the parent of the current state and
take a different path downwards from there. If all paths from this
state have already been explored, backtrack to its parent.

• Continue this procedure until you find a solution (or all solutions),
or establish that no solution exists.

• A state in the decision tree can be encoded as an array, a[0..c-1]
for c columns, where a[i] = row position of queen in column i.

8

COMP 322, Spring 2013 (V.Sarkar)

Backtracking in Decision Trees

Q
Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q
Q

Q

Q

Q
Q

Q

place 1st queen

place 2nd queen

place 3rd queen

place 4th queen

empty board a = []

a = [0] a = [1]

a = [0 2] a = [0 3] a = [1 3]

a = [0 3 1]
a = [1 3 0]

a = [1 3 0 2]

COMP 322, Spring 2013 (V.Sarkar)

Sequential solution for NQueens
(counting all solutions)

1. static int count;

2. . . .

3. count = 0;

4. nqueens_kernel(new int[0], 0);

5. System.out.println(“No. of solutions = “ + count);

6. . . .

7. void nqueens_kernel(int [] a, int depth) {

8. if (size == depth) count++;

9. else

10. /* try each possible position for queen at depth */

11. for (int i = 0; i < size; i++) {

12. /* allocate a temporary array and copy array a into it */

13. int [] b = new int [depth+1];

14. System.arraycopy(a, 0, b, 0, depth);

15. b[depth] = i;

16. if (ok(depth+1,b)) nqueens_kernel(b, depth+1);

17. } // for-async

18. } // nqueens_kernel()

10

COMP 322, Spring 2013 (V.Sarkar)

Parallel Solution to NQueens with Finish
Accumulators (counting all solutions)

1. static accumulator count;

2. . . .

3. count = accumulator.factory.accumulator(SUM, int.class);

4. finish(a) nqueens_kernel(new int[0], 0);

5. System.out.println(“No. of solutions = “ + count.get().intValue());

6. . . .

7. void nqueens_kernel(int [] a, int depth) {

8. if (size == depth) count.put(1);

9. else

10. /* try each possible position for queen at depth */

11. for (int i = 0; i < size; i++) async {

12. /* allocate a temporary array and copy array a into it */

13. int [] b = new int [depth+1];

14. System.arraycopy(a, 0, b, 0, depth);

15. b[depth] = i;

16. if (ok(depth+1,b)) nqueens_kernel(b, depth+1);

17. } // for-async

18. } // nqueens_kernel()

11

COMP 322, Spring 2013 (V.Sarkar)

Outline of Today’s Lecture
• Parallel N-Queens Algorithm

• Parallel Prefix Sum Algorithm

Acknowledgments

• COMP 322 Module 1 handout, Chapter 6, Chapter 7

• Marc Pomplun, U.Mass Boston, CS 271, Introduction to Cognitive Science,
Lecture 17: Game-Playing Algorithms

—http://www.cs.umb.edu/~marc/cs271/cog11-10.ppt

• Prof. Kathy Yelick, UC Berkeley, CS 194 Lecture, Fall 2007
—http://www.cs.berkeley.edu/~yelick/cs194f07/lectures/lect09-dataparallel.pdf

12

COMP 322, Spring 2012 (V.Sarkar)13

Prefix Sum (Scan) Problem Statement
Given input array A, compute output array X as follows

• The above is an inclusive prefix sum since X[i] includes A[i]

• For an exclusive prefix sum, perform the summation for 0 <=j <i

• It is easy to see that prefix sums can be computed sequentially in
O(n) time

// Copy input array A into output array X

X = new int[A.length]; System.arraycopy(A,0,X,0,A.length);

// Update array X with prefix sums

for (int i=1 ; i < X.length ; i++) X[i] += X[i-1];

COMP 322, Spring 2012 (V.Sarkar)14

An Inefficient Parallel Prefix Sum program
1. finish {

2. for (int i=0 ; i < X.length ; i++)

3. // computeSum() adds A[0..i] in parallel

4. async X[i] = computeSum(A, 0, i);

5. }

Observations:

• Critical path length, CPL = O(log n)

• Total number of operations, WORK = O(n2)

• With P = O(n) processors, the best execution time that you can
achieve is TP = max(CPL, WORK/P) = O(n), which is no better than
sequential!

COMP 322, Spring 2012 (V.Sarkar)15

How can we do better?
Observation: each prefix sum can be decomposed into reusable

terms of power-of-2-size e.g.

Approach:

• Combine reduction tree idea from Parallel Array Sum with partial
sum idea from Sequential Prefix Sum

• Use an “upward sweep” to perform parallel reduction, while
storing partial sum terms in tree nodes

• Use a “downward sweep” to compute prefix sums while reusing
partial sum terms stored in upward sweep

COMP 322, Spring 2012 (V.Sarkar)16

Parallel Prefix Sum: Upward Sweep
(Alternate formulation to Lecture 10)

Upward sweep is just like Parallel Reduction, except that partial sums
are also stored along the way

1. Receive values from left and right children
2. Compute left+right and store in box
3. Send left+right value to parent 15

2

Input array, A:

4

6
15

5 4

9

1. Receive value from parent (root receives 0)
2. Send parent’s value to LEFT child (prefix sum for elements to left of left

child’s subtree)
3. Send parent’s value+ left child’s box value to RIGHT child (prefix sum for

elements to left of right child’s subtree)
4. Add A[i] to get inclusive prefix sum

+ A[i]

Exclusive prefix sums

COMP 322, Spring 2012 (V.Sarkar)17

Parallel Prefix Sum: Downward Sweep

0

4

6
15

5 4

9

Inclusive prefix sums

COMP 322, Spring 2012 (V.Sarkar)18

Summary of Parallel Prefix Sum
Algorithm

• Critical path length, CPL = O(log n)

• Total number of add operations, WORK = O(n)

• Optimal algorithm for P = O(n/log n) processors
—Adding more processors does not help

• Parallel Prefix Sum has several applications that go beyond
computing the sum of array elements

• Parallel Prefix Sum can be used for any operation that is
associative (need not be commutative)
—In contrast, finish accumulators require the operator to be both

associative and commutative

How do associativity and commutativity make a difference?

Time for worksheet #8!

COMP 322, Spring 2012 (V.Sarkar)19

Example Applications of Parallel Prefix
Algorithm

• Prefix Max with Index of First Occurrence: given an input array A,
output an array X of objects such that X[i].max is the maximum of
elements A[0…i] and X[i].index contains the index of the first
occurrence of X[i].max in A[0…i]
—Homework 2 includes this problem just for the entire array (not

intermediate prefix “sums”)

• Filter and Packing of Strings: given an input array A identify
elements that satisfy some desired property (e.g., uppercase), and
pack them in a new output array. (First create a 0/1 array for
elements that satisfy the property, and then compute prefix sums
to identify locations of elements to be packed.)

—Useful for parallelizing partitioning step in Parallel Quicksort algorithm
(Approaches 2 and 3)

COMP 322, Spring 2012 (V.Sarkar)

Use of Prefix Sums to parallelize partition() in
Quicksort (Approach 2, Summary of Listing 30)

1. partition(int[] A, int M, int N) { // choose pivot from M..N

2. forall (point [k] : [0:N-M]) { // parallel loop

3. lt[k] = (A[M+k] < A[pivot] ? 1 : 0); // bit vector with < comparisons

4. eq[k] = (A[M+k] == A[pivot] ? 1 : 0); // bit vector with = comparisons

5. gt[k] = (A[M+k] > A[pivot] ? 1 : 0); // bit vector with > comparisons

6. buffer[k] = A[M+k]; // Copy A[M..N] into buffer

7. }

8. Copy lt, eq, gt, into ltPS, eqPS, gtPS before step 9

9. final int ltCount = computePrefixSums(ltPS); //update lt with prefix sums

10. final int eqCount = computePrefixSums(eqPS); //update eq with prefix sums

11. final int gtCount = computePrefixSums(gtPS); //update gt with prefix sums

12. // Parallel move from buffer into A

13. forall (point [k] : [0:N-M]) {

14. if(lt[k]==1) A[M+ltPS[k]-1] = buffer[k];

15. else if(eq[k]==1) A[M+ltCount+eqPS[k]-1] = buffer[k];

16. else A[M+ltCount+eqCount+gtPS[k]-1] = buffer[k];

17. }

18. . . .

19.} // partition

20

COMP 322, Spring 2013 (V.Sarkar)21

Worksheet #8: Associativity and
Commutativity

Name 1: ___________________ Name 2: ___________________

Finish accumulators can be used for any associative and commutative binary
function.
Parallel Prefix Sum algorithm can be used for any associative binary function.

A binary function f is associative if f(f(x,y),z) = f(x,f(y,z)).
A binary function f is commutative if f(x,y) = f(y,x).

For each of the following functions, indicate if it can be used in a finish
accumulator or a parallel prefix sum algorithm or both or neither.

1) f(x,y) = x+y, for integers x, y

2) g(x,y) = (x+y)/2, for integers x, y

3) h(s1,s2) = concat(s1, s2) for strings s1, s2 e.g., h(“ab”,”cd”) = “abcd”

Use the space below for your answers.

