
COMP 322: Fundamentals of
Parallel Programming

Lecture 9: Abstract vs. Real Performance

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 9 30 January 2013

COMP 322, Spring 2013 (V.Sarkar)

Announcement
• Homework 1 feedback and grades will be sent to your

Rice email
—We will send one email with feedback and grades on

the written assignments and the programming report
this weekend (will cover 75% of the homework grade)

—We will send a second email next week with feedback
and grades on the entire homework (including the
remaining 25%)

• Homework 2 is due by 5pm on Wednesday, February 6

2

COMP 322, Spring 2013 (V.Sarkar)

Generalized Reduce
• Basic idea: given a binary function, f(x,y), and an identity element, i,

compute the reduction of an array X[0], X[1], ... as follows
—Reduction = f(f(f(i,X[0]),X[1]) ...), which can be computed sequentially as

follows
– temp := i; // identity element
– temp := f(temp, X[0]); // f(i,X[0])
– temp := f(temp, X[1]); // f(f(i,X[0]),X[1])
– . . .

• In Homework 2, you have to write an HJ program to compute the
reduction in parallel i.e., to obtain the same answer as the sequential
version, assuming that f(x,y) is associative and commutative.
—f(x,y) is specified by the combine() method and the identity element is

specified by the init() method

• In Worksheet 8, we studied the impact of commutativity and
associativity on the applicability of finish accumulators and the
parallel prefix algorithm

3

COMP 322, Spring 2013 (V.Sarkar)4

Worksheet #8 solution:
Associativity and Commutativity

A Finish Accumulator (FA) can be used for any associative and commutative
binary function.
Parallel Prefix (PP) algorithm can be used for any associative binary function
(the same applies for parallel reductions in ArraySum1 and ArraySum2).

A binary function f is associative if f(f(x,y),z) = f(x,f(y,z)).
A binary function f is commutative if f(x,y) = f(y,x).

For each of the following functions, indicate if it can be used in a finish
accumulator or a parallel prefix sum algorithm or both or neither.

1) f(x,y) = x+y, for integers x, y, is associative and commutative
⇒ both FA and PP can be used

2) g(x,y) = (x+y)/2, for integers x, y, is commutative but not associative
⇒ neither FA nor PP can be used

3) h(s1,s2) = concat(s1, s2) for strings s1, s2 e.g., h(“ab”,”cd”) = “abcd” is
associative but not commutative
⇒ PP can be used, but not FA

COMP 322, Spring 2013 (V.Sarkar)

Venn diagram of binary functions

5

All

Associative

Associative &
Commutative

(Prefix Sum & Finish Accumulator return same result as Sequential)

(Prefix Sum returns
same result as

Sequential)
Commutative

f(x,y)

h(x,y)
g(x,y)

COMP 322, Spring 2013 (V.Sarkar)

Why does the String Concatenation function
h(s1,s2) not work with Finish Accumulators?

• Because it is not commutative

• Consider the following example (pseudo-code):
1. accumulator acc = new custom accumulator for function h;

2. finish(acc) {

3. async { ... a.put(“ab”);}

4. async { ... a.put(“cd”);}

5. async { ... a.put(“ef”);}

6. async { ... a.put(“gh”);}

7. }

8. print acc.get();

• Since the order of the four put() operations is nondeterministic, the
final result can be any permutation of the four strings, when using
a finish accumulator

• However, parallel prefix (and tree reduction) will compute
h(h(“ab”,”cd”), h(“ef”,”gh”)), which is correct due to associativity

6

COMP 322, Spring 2013 (V.Sarkar)

Why does the pairwise-average function g(x,y) not
work with Finish Accumulators or Parallel Prefix?

• Because g(x,y) = (x+y)/2 is not associative

• Consider the following finish accumulator example (pseudo-code):
1. accumulator = new custom accumulator for function g;

2. // assume that accumulator is initialized to zero

3. finish {

4. async { ... a.put(2);} // result := g(result, 2)

5. async { ... a.put(4);} // result := g(result,”4”)

6. }

• Since the order of the two asyncs is nondeterministic, the final
result can be g(g(0,2),4) = 2.5 or g(g(0,4),2) = 2

• A similar demonstration can be made for Parallel Prefix since its
result can be g(g(0,2),4) = 2.5 or g(0,g(2,4)) = 1.5

7

COMP 322, Spring 2013 (V.Sarkar)

Outline of Today’s Lecture
• Abstract vs. Real performance

Acknowledgments

• COMP 322 Module 1 handout, Sections 9.1, 9.2, 9.3

8

COMP 322, Spring 2013 (V.Sarkar)

HJ Compilation and Execution
Environment

Foo.hj

HJ compiler HJ compiler translates Foo.hj to Foo.class, and inserts
calls to HJ runtime as needed

Foo.class

HJ source program --- must contain a class named Foo
with a public static void main(String[] args) method

HJ Runtime Environment =
JRE + HJ libraries +

HJ Multithreaded Runtime

Data Race Detection Output,
HJ Abstract Performance Metrics
(all enabled by appropriate options)

HJ Program Output

hjc Foo.hj

hj –places m:n Foo

HJ runtime allocates m*n worker threads across m “places”
(default values: m = 1 place, n = # hardware cores/threads)

DrHJ IDE (optional)

9

COMP 322, Spring 2013 (V.Sarkar)

IR Analysis +
optimizations

Syntactic and
Semantic
analysis

LPG

Polyglot

AST

Parsing

Bytecode

.hj files

IR Gen

Soot

PIR

AST

Frontend

Backend

Under the hood look at the HJ Compiler

Source of error
messages labeled “Polyglot”

Source of error
messages labeled “Soot”

10

COMP 322, Spring 2013 (V.Sarkar)

Under the Hood View of Futures
in HJ Runtime System

future = (storage, producerTask, waitingTasks)!

!
future<int> F = async<int>{…; return v;}!
!
future<int> G = async<int>{…; F.get();…;}!

TaskF ContainerF TaskG TaskH TaskJ

11

COMP 322, Spring 2013 (V.Sarkar)

Scheduling HJ tasks on processors in a
parallel machine

• HJ runtime creates a small number of worker threads, typically one per core
• Workers push async’s and/or “continuations” into a logical work queue

• when an async operation is performed
• when an end-finish operation is reached

• Workers pull task/continuation work item when they are idle

12

COMP 322, Spring 2013 (V.Sarkar)

Continuations
• A continuation is one of two kinds of program points

—The point in the parent task immediately following an async
—The point immediately following an end-finish or a future get()

• Continuations are also referred to as task-switching points
—Program points at which a worker may switch execution between

different tasks (depends on scheduling policy)
1.finish { // F1

2. async A1;

3. finish { // F2

4. async A3;

5. async A4;

6. }

7. S5;

8.}

Continuations

13

COMP 322, Spring 2013 (V.Sarkar)

Work-Sharing vs. Work-Stealing
Scheduling Paradigms

• Work-Sharing
—Busy worker eagerly distributes new work
—Easy implementation with global task pool
—Access to the global pool needs to be

synchronized: scalability bottleneck

• Work-Stealing
—Busy worker incurs little overhead to create

work
—Idle worker “steals” the tasks from busy

workers
—Distributed task pools lead to improved

scalability
—When task Τa spawns Τb, the worker can

–stay on Τa, making Τb available for execution
by another processor (help-first policy), or

–start working on Τb first (work-first policy)

w1 w2 w3 w4

push
task

pull
task

w1 w2 w3

work-sharing

work-stealing runtime

steal task

14
6

COMP 322, Spring 2013 (V.Sarkar)

Work-first vs. Help-first work-stealing
policies on 2 processors

15

1. finish {

2. // Start of Task T0 (main program)

3. sum1 = 0; sum2 = 0; // sum1 & sum2 are static fields

4. async { // Task T1 computes sum of upper half of array

5. for(int i=X.length/2; i < X.length; i++)

6. sum2 += X[i];

7. }

8. // T0 computes sum of lower half of array

9. for(int i=0; i < X.length/2; i++) sum1 += X[i];

10. }

11. // Task T0 waits for Task T1 (join)

12. return sum1 + sum2;

13.} // finish

• Help-first policy: Worker 0 executes lines 1, 2, 3 in T0, pushes out async on line 4, and then
executes lines 8, 9 in Task T0. Worker 1 steals async on line 4 and executes task T1.

• Work-first policy: Worker 0 executes lines 1, 2, 3 in T0, pushes out continuation on line 8,
and then executes async in task T0. Worker 1 steals continuation at line 8 in T0.

COMP 322, Spring 2013 (V.Sarkar)

Work-first vs. Help-first work-stealing
policies on 2 processors (contd)

16

1. finish {

2. // Start of Task T0 (main program)

3. sum1 = 0; sum2 = 0; // sum1 & sum2 are static fields

4. async { // Task T1 computes sum of upper half of array

5. for(int i=X.length/2; i < X.length; i++)

6. sum2 += X[i];

7. }

8. // T0 computes sum of lower half of array

9. for(int i=0; i < X.length/2; i++) sum1 += X[i];

10. }

11. // Task T0 waits for Task T1 (join)

12. return sum1 + sum2;

13.} // finish

Continuations

Help-First worker does not switch tasks
Work-first worker will switch tasks

Help-First worker can switch tasks
Work-first worker can switch tasks

Let’s try
more of
this in
Worksheet
#9 !

COMP 322, Spring 2013 (V.Sarkar)17

Worksheet #9: Continuations and Work-
First vs. Help-First Work-Stealing Policies

Name 1: ___________________ Name 2: ___________________

For each of the continuations below, label it as “WF” if a work-first worker
can switch tasks at that point and as “HF” if a help-first worker can switch
tasks at that point. Some continuations may have both labels.

1.finish { // F1

2. async A1;

3. finish { // F2

4. async A3;

5. async A4;

6. }

7. S5;

8.}

Continuations

