
COMP 322 Spring 2015

Homework 2: due by 5pm on Wednesday, February 11, 2015

(Total: 100 points)
Instructor: Vivek Sarkar

All homeworks should be submitted in a directory named hw 2 using the turn-in script. In
case of problems using the script, you should email a zip file containing the directory to
comp322-staff@mailman.rice.edu before the deadline. See course wiki for late submission penal-
ties.

Honor Code Policy: All submitted homeworks are expected to be the result of your individual effort. You
are free to discuss course material and approaches to problems with your other classmates, the teaching
assistants and the professor, but you should never misrepresent someone elses work as your own. If you use
any material from external sources, you must provide proper attribution.

1 Written Assignments (50 points total)

Please submit your solutions to the written assignments in either a plain text file named hw 2 written.txt

or a PDF file named hw 2 written.pdf in the hw 2 directory.

1.1 Finish Accumulators (25 points)

Consider the pseudocode shown below in Listing 1 for a Parallel Search algorithm that is intended to com-
pute C, the number of occurrences of the pattern array in the text array. What possible values can variables
count0, count1, and count2 contain after line 13, and why? Write your answers in terms of M , N , and C.

1 stat ic int count0 = 0 ; // s t a t i c f i e l d
2 . . .
3 accumulator a = new accumulator (SUM, int . class) ;
4 f in ish (a) {
5 for (int i = 0 ; i <= N − M; i++)
6 async {
7 int j ;
8 for (j = 0 ; j < M; j++) i f (t ex t [i+j] != pattern [j]) break ;
9 i f (j == M) { count0++; a .put (1) ; } // found at o f f s e t i

10 int count1 = a . get () . intValue () ;
11 } // for−async
12 } // f i n i s h
13 int count2 = a . get () . intValue () ;

Listing 1: Parallel Search using Finish Accumulators

1.2 Inverted Index using Map Reduce (25 points)

Consider the Map Reduce pattern described in the Topic 2.4 video lectures, and summarized in Section 2.4
of the Module 1 handout. Assume an input set of key-value pairs of the form (file, word). Define the map
and reduce functions to obtain an inverted index consisting of (word, {file1, file2, . . .}) key-value pairs i.e.,
the inverted index should specify for each word the set of files (file1, file2, . . .) that contain the word.

1 of 3

comp322-staff@mailman.rice.edu

COMP 322
Spring 2015

Homework 2: due by 5pm on Wednesday, February 11, 2015

(Total: 100 points)

2 Programming Assignment (50 points)

2.1 Setup

You should checkout the hw 2 project from your svn repository at:
https://svn.rice.edu/r/comp322/turnin/S15/NETID /hw 2.

You should notice the following Java files in your project:

• GeneralizedReduce.java,

• GeneralizedReduceApp.java,

• SumReduction.java, and

• SumReductionMain.java.

IMPORTANT: Among these files, you should edit GeneralizedReduce.java, and leave the other files un-
changed. Further, you should not modify any of the existing declarations in GeneralizedReduce.java.
Making additional modifications will make it difficult for the teaching staff to run automated scripts to
evaluate your code, and may result in penalties to your grade.

2.2 Generalized Reduce (50 points)

The goal of this assignment is to implement a GeneralizedReduce class to perform a user-specified reduction
on an array of generic objects. A skeleton for this class is available in the GeneralizedReduce.java file.

Your GeneralizedReduce class should support any class that implements the GeneralizedReduceApp inter-
face with init() and combine() methods to define a reduction operation. As an example, class SumReduction
implements the GeneralizedReduceApp interface to specify a sum reduction. Further, SumReductionMain.java
contains a test harness for SumReduction.

You should use abstract metrics to evaluate the parallelism in your solution. Specifically, any reduction client
should include a call to doWork(1) for each call to the combine() method, as in SumReduction.java. Thus,
the total WORK and CPL (critical path length) for your program executions will be evaluated assuming
that each call to combine() takes one unit of time. You will not be penalized if the actual execution time of
your parallel program is large due to overheads, so long as the abstract metrics are correct. Note that the
abstract metrics are independent of the computer that you run your program on.

Your submission should include the following in the hw 2 directory; all code should include basic documen-
tation for each method in each class:

1. (20 points) A complete parallel implementation of the GeneralizedReduce class. You should aim for
maximum parallelism, assuming that each call to combine() just does 1 unit of work. The imple-
mentation can use async, finish and/or future constructs, but not finish accumulators. Test your
implementation with the TestSumReduction test harness.

2. (15 points) A complete implementation of new MaxReduction and TestMaxReduction classes to test
your GeneralizedReduce implementation for a special max-index reduction that returns both the max
value and its index in an input integer array. If the max value has multiple occurrences in the input
array, then you should return the index of the first occurrence. For example, if the input array is [(5,0),
(1,1), (-8,2), (5,3), (0,4)] where each element consists of a value paired with its index in the array, the
output should consist of (5, 0), since 5 is the largest value in the array and its first occurrence is at
index 0.

3. (15 points) A report file formatted either as a plain text file named hw 2 report.txt or a PDF file
named hw 2 report.pdf in the hw 2 directory. The report should summarize the design of your par-
allel solution, and explain why you believe that your implementation is correct, data-race-free, and

2 of 3

COMP 322
Spring 2015

Homework 2: due by 5pm on Wednesday, February 11, 2015

(Total: 100 points)

maximally parallel. It should also include abstract metrics obtained from executing both TestSum-
Reduction and TestMaxReduction with randomly-generated arrays of size n = 1, 10, 100, 1000. The
abstract metrics should include the WORK, CPL, and IDEAL PARALLELISM (= WORK/CPL)
values from each run.

3 of 3

	Written Assignments (50 points total)
	Finish Accumulators (25 points)
	Inverted Index using Map Reduce (25 points)

	Programming Assignment (50 points)
	Setup
	Generalized Reduce (50 points)

