
COMP 322: Fundamentals of
Parallel Programming

Lecture 17: Phasers (contd), Signal
Statement, Fuzzy Barriers

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 17 24 February 2014

COMP 322, Spring 2014 (V.Sarkar)

Worksheet #16:
Left-Right Neighbor Synchronization using Phasers

COMP 322, Spring 2011 (V.Sarkar)!18

Barrier & P-2-P Sync for 1-D
Averaging!

doPhase1(i)

doPhase2(i)

 i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8

1. finish (() -> {
2. final HjPhaser[] ph =
 new HjPhaser[m+2]; // array of phaser objects
3. forseq(0, m+1, (i) -> { ph[i] = newPhaser(SIG_WAIT) });
4. forseq(1, m, (i) -> {
5. asyncPhased(
 ph[i-1].inMode(ph[i-1].inMode(WAIT)),
 ph[i].inMode(ph[i].inMode(SIG)),
 ph[i+1].inMode(ph[i+1].inMode(WAIT)), () -> {
6. doPhase1(i);
7. next();
8. doPhase2(i); }); // asyncPhased
9. }); // forseq
10.}); // finish

2

Name: ___________________

Netid: ___________________

Complete the phased clause below to implement the left-right neighbor
synchronization shown above.

COMP 322, Spring 2014 (V.Sarkar)3

Announcements
• Take-home midterm exam (Exam 1) will be given after lecture on

Wednesday, February 26, 2014
—Closed-book, closed computer, written exam that can be taken in any

2-hour duration during that period
—Will need to be returned to Penny Anderson (Duncan Hall 3180) by

4pm on Friday, February 28, 2014
– Exam can also be picked up from Penny Anderson starting 2pm

on Feb 26th if you’re unable to attend lecture.
—No lecture on Friday, Feb 28th

• Homework 3 is due by by 11:59pm on Wednesday, March 12, 2014
—Programming assignment is more challenging than in previosu

homeworks --- start early!

COMP 322, Spring 2014 (V.Sarkar)

Scope of Midterm Exam
• Midterm exam will cover material from Lectures 1 - 17

—Lecture 18 (Feb 26th) will be a Midterm review

• Excerpts from midterm exam instructions
—“closed-book, closed-notes, closed-computer”
—“Record start time when you open the exam, and end time when you

finish. The total duration must be at most 2 hours. ”
—“Since this is a written exam and not a programming assignment,

syntactic errors in program text will not be penalized (e.g., missing
semicolons, incorrect spelling of keywords, etc) so long as the
meaning of your solution is unambiguous.”

—“If you believe there is any ambiguity or inconsistency in a question,
you should state the ambiguity or inconsistency that you see, as well
as any assumptions that you make to resolve it.”

4

COMP 322, Spring 2014 (V.Sarkar)

• Phaser allocation
— HjPhaser ph = newPhaser(mode);

– Phaser ph is allocated with registration mode
– Phaser lifetime is limited to scope of Immediately Enclosing Finish (IEF)

• Registration Modes
— HjPhaserMode.SIG, HjPhaserMode.WAIT,

HjPhaserMode.SIG_WAIT, HjPhaserMode.SIG_WAIT_SINGLE
– NOTE: phaser WAIT is unrelated to Java wait/notify (which we will study later)

• Phaser registration
— asyncPhased (ph1.inMode(<mode1>), ph2.inMode(<mode2>), … () -> <stmt>)

– Spawned task is registered with ph1 in mode1, ph2 in mode2, …
– Child task’s capabilities must be subset of parent’s
– asyncPhased <stmt> propagates all of parent’s phaser registrations to child

• Synchronization
— next();

– Advance each phaser that current task is registered on to its next phase
All signals are performed, followed by all waits

– Semantics depends on registration mode
– Barrier is a special case of phaser, which is why next is used for both

Summary of Phaser Construct (Recap)

5

COMP 322, Spring 2014 (V.Sarkar)

Left-Right Neighbor Synchronization
Example for m=3

1.finish(() -> { // Task-0
2. final HjPhaser ph1 = newPhaser(SIG_WAIT);
3. final HjPhaser ph2 = newPhaser(SIG_WAIT);
4. final HjPhaser ph3 = newPhaser(SIG_WAIT);
5. asyncPhased(ph1.inMode(SIG),ph2.inMode(WAIT),
6. () -> { doPhase1(1);
7. next(); // signals ph1, waits on ph2
8. doPhase2(1);
9. }); // Task T1
10. asyncPhased(ph2.inMode(SIG),ph1.inMode(WAIT),ph3.inMode(WAIT),
11. () -> { doPhase1(2);
12. next(); // signals ph2, waits on ph3
13. doPhase2(2);
14. }); // Task T2
15. asyncPhased(ph3.inMode(SIG),ph2.inMode(WAIT),
16. () -> { doPhase1(3);
17. next(); // signals ph3, waits on ph2
18. doPhase2(3);
19. }); // Task T3
20.}); // finish

6

COMP 322, Spring 2014 (V.Sarkar)

Computation Graph for m=3 example

7

1,2,3,4

6

11

16

7-signal 7-wait

12-signal

17-signal

12-wait

17-wait

ph1.next
-start(0à1)

ph1.next
-end(0à1)

ph2.next
-start(0à1)

ph2.next
-end(0à1)

ph3.next
-start(0à1)

ph3.next
-end(0à1)

8

13

18

20-drop 20-end-finish

spawn continue signal wait join

COMP 322, Spring 2014 (V.Sarkar)

Signal statement
• When a task T performs a signal operation, it notifies all the

phasers it is registered on that it has completed all the work
expected by other tasks in the current phase (“shared” work).
—Since signal is a non-blocking operation, an early execution of signal

cannot create a deadlock.

• Later, when T performs a next operation, the next degenerates to a
wait since a signal has already been performed in the current
phase.

• The execution of “local work” between signal and next is
performed during phase transition
—Referred to as a “split-phase barrier” or “fuzzy barrier”

8

COMP 322, Spring 2014 (V.Sarkar)

Example of Split-Phase Barrier using
Signal Statement

1.finish(() -> {
2. final HjPhaser ph = newPhaser(SIG_WAIT);
3. asyncPhased(ph.inMode(SIG_WAIT), () -> { // Task T1
4. a = ... ; // Shared work in phase 0
5. signal(); // Signal completion of a's computation
6. b = ... ; // Local work in phase 0
7. next(); // Barrier -- wait for T2 to compute x
8. b = f(b,x); // Use x computed by T2 in phase 0
9. });
10. asyncPhased(ph.inMode(SIG_WAIT), () -> { // Task T2
11. x = ... ; // Shared work in phase 0
12. signal(); // Signal completion of x's computation
13. y = ... ; // Local work in phase 0
14. next(); // Barrier -- wait for T1 to compute a
15. y = f(y,a); // Use a computed by T1 in phase 0
16. });
17.}); // finish

9

COMP 322, Spring 2014 (V.Sarkar)

Computation Graph for Split-Phase Barrier Example
(without async and finish nodes and edges)

4

11

5-signal 7-wait

12-signal 14-wait

ph.next
-start(0à1)

ph.next
-end(0à1)

8

15

spawn continue signal wait join

6

13

10

COMP 322, Spring 2014 (V.Sarkar)

Full Computation Graph for Split-Phase
Barrier Example (Figure 52)

2

4

11

5-signal 7-wait

12-signal 14-wait

ph.next
-start(0à1)

ph.next
-end(0à1)

8

15

20-drop 20-end-finish

spawn continue signal wait join

6

13

11

COMP 322, Spring 2013 (V.Sarkar)

Data Races and Determinism extended
to Phasers

• A parallel program is said to be functionally
deterministic if it always computes the same
answer when given the same input

• A parallel program is said to be structurally
deterministic if it always produces the same
computation graph when given the same input

• Race-Free Determinism
—If a parallel program is written using the

constructs learned so far in Module 1 (finish,
async, futures, accumulators, data-driven tasks,
barriers, phasers) and is known to be race-free,
then it must be both functionally deterministic
and structurally deterministic

12

COMP 322, Spring 2014 (V.Sarkar)

Worksheet #17:
Critical Path Length for Computation with Signal Statement

1.finish(() -> {
2. final HjPhaser ph = newPhaser(SIG_WAIT);
3. asyncPhased(ph.inMode(SIG_WAIT), () -> { // Task T1
4. A(0); doWork(1); // Shared work in phase 0
5. signal();
6. B(0); doWork(100); // Local work in phase 0
7. next(); // Wait for T2 to complete shared work in phase 0
8. C(0); doWork(1);
9. });
10. asyncPhased(ph.inMode(SIG_WAIT), () -> { // Task T2
11. A(1); doWork(1); // Shared work in phase 0
12. next(); // Wait for T1 to complete shared work in phase 0
13. C(1); doWork(1);
14. D(1); doWork(100); // Local work in phase 0
15. });
16.}); // finish

13

Name: ___________________ Netid: ___________________
Compute the WORK and CPL values for the program shown below. How would they be different
if the signal() statement was removed? (Hint: draw a computation graph as in slide 10)

