
COMP 322: Fundamentals of
Parallel Programming

Lecture 24: Monitors,
Java Concurrent Collections,

Linearizability of Concurrent Objects
Vivek Sarkar

Department of Computer Science, Rice University
vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 24 21 March 2014

COMP 322, Spring 2014 (V.Sarkar)

Solution to Worksheet #23:
Ideal Parallelism in Actor Pipeline

95
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen ! Prentice Hall, 1998

P0

P4

P3

P5

P2

P1

Time

Figure 5.6 Pipeline processing 10 data elements.

d9d8d7d6d5d4d3d2d1d0 P0 P1 P2 P3 P4 P5

(a) Pipeline structure

(b) Timing diagram

P8

P7

P9

P6

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

P7P6 P8 P9

Input sequence

p " 1 n

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8

d0 d1 d2 d3 d4 d5 d6 d7

d0 d1 d2 d3 d4 d5 d6

Consider a three-stage pipeline of actors set up so that P0.nextStage = P1,
P1.nextStage = P2, and P2.nextStage = null. The process() method for each
actor is shown below. Assume that 100 non-null messages are sent to actor P0
after all three actors are started, followed by a null message. What will the total
WORK and CPL be for this execution? Recall that each actor has a sequential
thread.

Solution: WORK = 300, CPL = 102

1. protected void process(final Object msg) {
2. if (msg == null) {
3. exit();
4. } else {
5. doWork(1); // unit work
6. }
7. if (nextStage != null) {
8. nextStage.send(msg);
9. }
10. }

...

2

COMP 322, Spring 2014 (V.Sarkar)

Monitors --- an object-oriented approach to isolation

• A monitor is an object containing

• some local variables (private data)

• methods that operate on local data (monitor regions)

• Only one task can be active in a monitor at a time, executing some
monitor region

• Analogous to a critical section

• As if each public method is an isolated construct

• Monitors can also be used for

• Mutual exclusion

• Cooperation

• In Operating Systems, a monitor is viewed as a high-level view of
semaphores

3

COMP 322, Spring 2014 (V.Sarkar)

Figure source: http://www.artima.com/insidejvm/ed2/images/fig20-1.gif

Monitors – a Diagrammatic summary

4

COMP 322, Spring 2014 (V.Sarkar)

Converting Standard Java
Libraries to Monitors

Different approaches:

1. Restrict access to a single task è no modification needed

2. Ensure that each call to a public method is isolated è excessive
serialization

3. Use specialized implementations that minimize serialization across
public methods è Java Concurrent Collections

• We will focus on three java.util.concurrent classes that can be
used freely in HJ programs, in addition to Java Atomic Variables

— ConcurrentHashMap, ConcurrentLinkedQueue, CopyOnWriteArraySet

• Other j.u.c. classes can be used in standard Java, but not in HJ
because they may perform blocking operations

— ArrayBlockingQueue, CountDownLatch, CyclicBarrier, DelayQueue,
Exchanger, FutureTask, LinkedBlockingQueue, Phaser
PriorityBlockingQueue, Semaphore, SynchronousQueue

5

COMP 322, Spring 2014 (V.Sarkar)

Concurrent Objects
• A concurrent object is an object that can correctly handle

methods invoked in parallel by different tasks or threads
—Optimized variant of monitors (permits parallel method invocations)
—Also referred to as “thread-safe objects”

• For simplicity, it is usually assumed that the body of each
method in a concurrent object is itself sequential
—Assume that method does not create child async tasks

• Implementations of methods can be serial as in monitors (e.g.,
enclose each method in an object-based isolated statement) or
concurrent (e.g., ConcurrentHashMap, ConcurrentLinkedQueue
and CopyOnWriteArraySet)

• A desirable goal is to develop implementations that are
concurrent while being as close to the semantics of the serial
version as possible

6

COMP 322, Spring 2014 (V.Sarkar)

java.util.concurrent library

• Atomic variables
— Efficient implementations of special-case patterns of isolated statements

• Concurrent Collections:
— Queues, blocking queues, concurrent hash map, …
— Data structures designed for concurrent environments

• Executors, Thread pools and Futures
— Execution frameworks for asynchronous tasking

• Locks and Conditions
— More flexible synchronization control
— Read/write locks

• Synchronizers: Semaphore, Latch, Barrier, Exchanger, Phaser
— Tools for thread coordination

• WARNING: only a small subset of the full java.util.concurrent library can safely be
used in HJ programs
— Atomic variables and some concurrent collections are part of the safe subset
— We will study the full library later this semester as part of Java Concurrency

7

COMP 322, Spring 2014 (V.Sarkar)

The Java Map Interface
—Map describes a type that stores a collection of key-value pairs
—A Map associates a key with a value
—The keys must be unique

– the values need not be unique
—Useful for implementing software caches (where a program stores

key-value maps obtained from an external source such as a
database), dictionaries, sparse arrays, …

—A Map is often implemented with a hash table (HashMap)
—Hash tables attempt to provide constant-time access to objects

based on a key (String or Integer)
– key could be your Student ID, your telephone number, social

security number, account number, …
—The direct access is made possible by converting the key to an

array index using a hash function that returns values in the range
0 … ARRAY_SIZE-1, typically by using a (mod ARRAY_SIZE)
operation

8

COMP 322, Spring 2014 (V.Sarkar)

java.util.concurrent.concurrentHashMap
• Implements ConcurrentMap sub-interface of Map

• Allows read (traversal) and write (update) operations to overlap
with each other

• Some operations are atomic with respect to each other e.g.,
—get(), put(), putIfAbsent(), remove()

• Aggregate operations may not be viewed atomically by other
operations e.g.,
—putAll(), clear()

• Expected degree of parallelism can be specified in
ConcurrentHashMap constructor
—ConcurrentHashMap(initialCapacity, loadFactor, concurrencyLevel)
—A larger value of concurrencyLevel results in less serialization, but a

larger space overhead for storing the ConcurrentHashMap

9

COMP 322, Spring 2014 (V.Sarkar)

Concurrent Collection Performance

10

COMP 322, Spring 2014 (V.Sarkar)

Example usage of ConcurrentHashMap in
org.mirrorfinder.model.BaseDirectory

11

COMP 322, Spring 2014 (V.Sarkar)

java.util.concurrent.ConcurrentLinkedQueue

• Queue interface added to java.util
– interface Queue extends Collection and includes

 boolean offer(E x); // same as add() in Collection
 E poll(); // remove head of queue if non-empty
 E remove(o) throws NoSuchElementException;
 E peek(); // examine head of queue without removing it

• Non-blocking operations
—offer() returns false when full
—poll() returns null when empty

• Fast thread-safe non-blocking implementation of Queue
interface: ConcurrentLinkedQueue

12

COMP 322, Spring 2014 (V.Sarkar)

Example usage of ConcurrentLinkedQueue in
org.apache.catalina.tribes.io.BufferPool15Impl

13

COMP 322, Spring 2014 (V.Sarkar)

java.util.concurrent.CopyOnWriteArraySet

• Set implementation optimized for case when sets are not large,
and read operations dominate update operations in frequency

• This is because update operations such as add() and remove()
involve making copies of the array
—Functional approach to mutation

• Iterators can traverse array “snapshots” efficiently without
worrying about changes during the traversal.

14

COMP 322, Spring 2014 (V.Sarkar)

Example usage of CopyOnWriteArraySet in
org.norther.tammi.spray.freemarker.DefaultTemplateLoader

15

COMP 322, Spring 2014 (V.Sarkar)

Correctness of a
Concurrent Object

• Consider a simple FIFO (First In, First Out) queue as a
canonical example of a concurrent object
—Method q.enq(o) inserts object o at the tail of the queue

– Assume that there is unbounded space available for all
enq() operations to succeed

—Method q.deq() removes and returns the item at the head of
the queue.
– Throws EmptyException if the queue is empty.

• What does it mean for a concurrent object like a FIFO
queue to be correct?
—What is a concurrent FIFO queue?
—FIFO means strict temporal order
—Concurrent means ambiguous temporal order

16

COMP 322, Spring 2014 (V.Sarkar)

Describing the concurrent via the sequential

time

q.deq():x

q.enq(x)

 enq(x) deq() returns x

 isolated-begin() isolated-end()

isolated-begin() isolated-end()
“Linearizability” --
behavior is
consistent with
sequential execution

enq

deq

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

17

COMP 322, Spring 2014 (V.Sarkar)

Informal definition of Linearizability

• Assume that each method call takes effect
“instantaneously” at some distinct point in time
between its invocation and return.

• An execution is linearizable if we can choose
instantaneous points that are consistent with a
sequential execution in which methods are executed
at those points

• A concurrent object is linearizable if all its
executions are linearizable.

18

COMP 322, Spring 2014 (V.Sarkar)

Example 1

time

q.enq(x)

time

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

19

COMP 322, Spring 2014 (V.Sarkar)

Example 1 (contd)

time

q.enq(x)

q.enq(y)

time

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

20

COMP 322, Spring 2014 (V.Sarkar)

Example 1 (contd)

time

q.enq(x)

q.enq(y) q.deq():x

time

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

21

COMP 322, Spring 2014 (V.Sarkar)

Example 1 (contd)

time

q.enq(x)

q.enq(y) q.deq():x

q.deq(y)

time

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

22

COMP 322, Spring 2014 (V.Sarkar)

Example 1 (contd)

time

q.enq(x)

q.enq(y) q.deq():x

q.deq(y)

linearizable
q.enq(x)

q.enq(y) q.deq():x

q.deq(y)

time

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

23

COMP 322, Spring 2014 (V.Sarkar)

Example 2

time

q.enq(x)

q.enq(y)

q.deq(y)q.enq(x)

q.enq(y)

not linearizable

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

24

COMP 322, Spring 2014 (V.Sarkar)

q.enq(x)

q.enq(y)

q.deq():y

q.deq():x

time

Example 3
Is this execution linearizable? How many possible linearizations
does it have?

25

COMP 322, Spring 2014 (V.Sarkar)

Example 4: execution of a monitor-based
implementation of FIFO queue q

Is this a linearizable execution?

Yes! Equivalent to “q.enq(x) ; q.enq(y) ; q.deq():x”

26

COMP 322, Spring 2014 (V.Sarkar)

Example 5: Example execution of method
calls on a concurrent FIFO queue q

Is this a linearizable execution?

Yes! Equivalent to “q.enq(x) ; q.enq(y) ; q.deq():x”

27

COMP 322, Spring 2014 (V.Sarkar)

Linearizability of Concurrent Objects
(Summary)

Concurrent object

• A concurrent object is an object that can correctly handle
methods invoked in parallel by different tasks or threads
—Examples: concurrent queue, AtomicInteger

Linearizability

• Assume that each method call takes effect “instantaneously” at
some distinct point in time between its invocation and return.

• An execution is linearizable if we can choose instantaneous
points that are consistent with a sequential execution in which
methods are executed at those points

• An object is linearizable if all its possible executions are
linearizable

28

COMP 322, Spring 2014 (V.Sarkar)

Worksheet #24:
Linearizability of method calls on a concurrent object

Name: ___________________ Netid: ___________________

Is this a linearizable execution for a FIFO queue, q?

29

