COMP 322: Fundamentals of
Parallel Programming

Lecture 24: Monitors,
Java Concurrent Collections,

Linearizability of Concurrent Objects

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

COMP 322 Lecture 24 21 March 2014

Solution to Worksheet #23:
Ideal Parallelism in Actor Pipeline

Consider a three-stage pipeline of actors set up so that PO.nextStage = P1,
P1.nextStage = P2, and P2.nextStage = null. The process() method for each
actor is shown below. Assume that 100 non-null messages are sent to actor PO
after all three actors are started, followed by a null message. What will the total
WORK and CPL be for this execution? Recall that each actor has a sequential
thread.

Solution: WORK = 300, CPL =102

Input sequence

. d9d8d7d6d5d4d3d2d1d0 > PO i Pl > P2

protected void process(final Object msg) {
if (msg == null) {
exit(Q);
} else {
dowork(1); // unit work
}

if (nextStage != null) {
nextStage.send(msg) ;
}

1.
2.
3.
4.
5.
6.
7.
8.
9.
1

2 COMP 322, Spring 2014 (V.Sarkar) &

Monitors --- an object-oriented approach to isolation

« A monitor is an object containing
« some local variables (private data)
 methods that operate on local data (monitor regions)

« Only one task can be active in a monitor at a time, executing some
monitor region

« Analogous to a critical section

« As if each public method is an isolated construct
* Monitors can also be used for

* Mutual exclusion

« Cooperation

* In Operating Systems, a monitor is viewed as a high-level view of
semaphores

3 COMP 322, Spring 2014 (V.Sarkar) %§

Monitors — a Diagrammatic summary

The Owner

Entry Set Wait Set

LINV Q (l((/ty I(/um. O O
| O (lu/llllt O O

release and

O A Waiting Thread

An Active Thread

Figure 20-1. A Java monitor.

Figure source:

4 COMP 322, Spring 2014 (V.Sarkar) D

Converting Standard Java
Libraries to Monitors

Different approaches:
1. Restrict access to a single task = no modification needed

2. Ensure that each call to a public method is isolated = excessive
serialization

3. Use specialized implementations that minimize serialization across
public methods = Java Concurrent Collections

« We will focus on three java.util.concurrent classes that can be
used freely in HJ programs, in addition to Java Atomic Variables

— ConcurrentHashMap, ConcurrentlLinkedQueue, CopyOnWriteArraySet

« Other j.u.c. classes can be used in standard Java, but not in HJ
because they may perform blocking operations
— ArrayBlockingQueue, CountDownLatch, CyclicBarrier, DelayQueue,

Exchanger, FutureTask, LinkedBlockingQueue, Phaser
PriorityBlockingQueue, Semaphore, SynchronousQueue

5 COMP 322, Spring 2014 (V.Sarkar) D

Concurrent Objects

A concurrent object is an object that can correctly handle
methods invoked in parallel by different tasks or threads
—Optimized variant of monitors (permits parallel method invocations)
— Also referred to as "thread-safe objects”

« For simplicity, it is usually assumed that the body of each
method in a concurrent object is itself sequential

— Assume that method does not create child async tasks

« Implementations of methods can be serial as in monitors (e.g.,
enclose each method in an object-based isolated statement) or
concurrent (e.g., ConcurrentHashMap, ConcurrentlLinkedQueue
and CopyOnWriteArraySet)

« A desirable goal is to develop implementations that are
concurrent while being as close to the semantics of the serial
version as possible

6 COMP 322, Spring 2014 (V.Sarkar) D

Java.util.concurrent library

Atomic variables
— Efficient implementations of special-case patterns of isolated statements

Concurrent Collections:
— Queues, blocking queues, concurrent hash map, ..

— Data structures designed for concurrent environments

Executors, Thread pools and Futures
— Execution frameworks for asynchronous tasking

Locks and Conditions
— More flexible synchronization control
— Read/write locks

Synchronizers: Semaphore, Latch, Barrier, Exchanger, Phaser
— Tools for thread coordination

WARNING: only a small subset of the full java.util.concurrent library can safely be
used in HJ programs

— Atomic variables and some concurrent collections are part of the safe subset

— We will study the full library later this semester as part of Java Concurrency

COMP 322, Spring 2014 (V.Sarkar) %@

The Java Map Interface

— Map describes a type that stores a collection of key-value pairs
— A Map associates a key with a value
— The keys must be unique

- the values need not be unique

—Useful for implementing software caches (where a program stores
key-value maps obtained from an external source such as a
database), dictionaries, sparse arrays, ..

—A Map is often implemented with a hash table (HashMap)
—Hash tables attempt to provide constant-time access to objects
based on a key (String or Integer)
- key could be your Student ID, your telephone number, social
security number, account number, ..
—The direct access is made possible by converting the key to an
array index using a hash function that returns values in the range

8 COMP 322, Spring 2014 (V.Sarkar) G

java.util.concurrent.concurrentHashMap

« Implements ConcurrentMap sub-interface of Map

« Allows read (traversal) and write (update) operations to overlap
with each other

- Some operations are atomic with respect to each other e.g.,
—get(), put(), putIfAbsent(), remove()

- Aggregate operations may not be viewed atomically by other
operations e.g.,

—putAll(), clear()

« Expected degree of parallelism can be specified in
ConcurrentHashMap constructor

— ConcurrentHashMap(initialCapacity, loadFactor, concurrencylLevel)

— A larger value of concurrencylLevel results in less serialization, but a
larger space overhead for storing the ConcurrentHashMap

9 COMP 322, Spring 2014 (V.Sarkar) D

Concurrent Collection Performance

Throughput in Thread-safe Maps

357 - ConcurrentHashMap
- ConcurrentSkipListMap
3 SynchronizedHashMap

- SynchronizedTreeMap

el
2]

3 Java 6 B77

g 8-Way System
3 s 40% Read Only
§” 60% Insert
£, 2% Removals

0.5

§

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 24 32 40 48
Threads

10 COMP 322, Spring 2014 (V.Sarkar)

Example usage of ConcurrentHashMap in
org.mirrorfinder.model.BaseDirectory

1| public abstract class BaseDirectory extends Baseltem implements Directory {
2 Map files = new ConcurrentHashMap ();

3 Coe

4 public Map getFiles () {

5 return files;

6|}

7 public boolean has(File item) {

8 return getFiles ().containsValue(item);

9 1}

10 public Directory add(File file) {

11 String key = file .getName();

12 if (key = null) throw new Error(. . .);

13 getFiles ().put(key, file);

14 Coe

15 return this;

16| }

17 public Directory remove(File item) throws NotFoundException {
18 if (has(item)) {

19 getFiles ().remove(item.getName ());

20 Coe

21 } else throw new NotFoundException(”can’t_remove_unrelated_item”);
2| 1}

23| }

Listing 1: Example usage of ConcurrentHashMap in org.mirrorfinder.model.BaseDirectory

11 COMP 322, Spring 2014 (V.Sarkar) %}

java.util.concurrent.ConcurrentLinkedQueue

Queue interface added to java.util
- interface Queue extends Collection and includes

boolean offer(E x). // same as add() in Collection

E poll(); // remove head of queue if non-empty

E remove(o) throws NoSuchElementException;

E peek(); // examine head of queue without removing it
Non-blocking operations
—offer() returns false when full

—poll() returns null when empty

Fast thread-safe non-blocking implementation of Queue
interface: ConcurrentLinkedQueue

COMP 322, Spring 2014 (V.Sarkar) Z"\%‘

Example usage of ConcurrentLinkedQueue in
org.apache.catalina.tribes.io.BufferPool15Impl

1| class BufferPooll5Impl implements BufferPool.BufferPoolAPI {

2 protected int maxSize;

3 protected AtomicInteger size = new AtomicInteger (0);

4 protected ConcurrentLinkedQueue queue = new ConcurrentLinkedQueue ();
) Coe

6 public XByteBuffer getBuffer(int minSize, boolean discard) {

7 XByteBuffer buffer = (XByteBuffer) queue.poll ();

8 if (buffer != null) size.addAndGet(—buffer.getCapacity ());

9 if (buffer = null) buffer = new XByteBuffer (minSize , discard);
10 else if (buffer.getCapacity () <= minSize) buffer.expand(minSize);
11 Coe

12 return buffer;

13 }

14 public void returnBuffer (XByteBuffer buffer) {

15 if ((size.get() + buffer.getCapacity()) <= maxSize) {

16 size .addAndGet(buffer . getCapacity ());

17 queue. offer (buffer);

18 }

19| }

20| }

Listing 2: Example usage of ConcurrentLinkedQueue in org.apache.catalina.tribes.io.BufferPooll15Impl

13 COMP 322, Spring 2014 (V.Sarkar) &

java.util.concurrent.CopyOnWriteArraySet

« Set implementation optimized for case when sets are not large,
and read operations dominate update operations in frequency

« This is because update operations such as add() and remove()
involve making copies of the array

—Functional approach to mutation

« TIterators can traverse array “snapshots” efficiently without
worrying about changes during the traversal.

14 COMP 322, Spring 2014 (V.Sarkar) D

Example usage of CopyOnWriteArraySet in
org.norther.tammi.spray.freemarker.DefaultTemplateLoader

l
1 public class DefaultTemplateLoader implements TemplateLoader, Serializable
2| {
3 private Set resolvers = new CopyOnWriteArraySet ();
4 public void addResolver (ResourceResolver res)
5| |
6 resolvers.add(res);
7|}
8 public boolean templateExists(String name)
9 A
10 for (Iterator i = resolvers.iterator(); i.hasNext();) {
11 if (((ResourceResolver) i.next()).resourceExists(name)) return true
12 }
13 return false;
14| }
15 public Object findTemplateSource(String name) throws [OException
16 {
17 for (Iterator i = resolvers.iterator(); i.hasNext();) {
18 CachedResource res = ((ResourceResolver) i.next()).getResource(name);
19 if (res != null) return res;
20 }
21 return null;
2 }
23}
|

Listing 3: Example usage of CopyOnWriteArraySet in org.norther.tammi.spray.freemarker.Default TemplateLoader

15 COMP 322, Spring 2014 (V.Sarkar) %\%‘

Correctness of a
Concurrent Object

Consider a simple FIFO (First In, First Out) queue as a
canonical example of a concurrent object

—Method q.enq(o) inserts object o at the tail of the queue

- Assume that there is unbounded space available for all
enq() operations to succeed

—Method q.deq() removes and returns the item at the head of
the queue.

- Throws EmptyException if the queue is empty.

What does it mean for a concurrent object like a FIFO
queue to be correct?

—What is a concurrent FIFO queue?
—FIFO means strict temporal order
— Concurrent means ambiguous temporal order

COMP 322, Spring 2014 (V.Sarkar) &

Describing the concurrent via the sequential

q.deq():x

isglated-begin() isolated-end()

‘de

q.enq(x)
a I | l: Q ﬂ'Linear'izabili‘ry" -)

isolcrred-begin()éerlq | isolatedé—end()i behavior is
i 5 5 5 consistent with

sequential execution

enq(x) deq() returns x.

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter 03.ppt

17 COMP 322, Spring 2014 (V.Sarkar) A

Informal definition of Linearizability

 Assume that each method call takes effect
“instantaneously” at some distinct point in time
between its invocation and return.

* An execution is linearizable if we can choose
instantaneous points that are consistent with a
sequential execution in which methods are executed
at those points

« A concurrent object is linearizable if all its
executions are linearizable.

18 COMP 322, Spring 2014 (V.Sarkar)

Example 1

[plele__

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter 03.ppt

19 COMP 322, Spring 2014 (V.Sarkar)

Example 1 (contd)

[plele__

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter 03.ppt

20 COMP 322, Spring 2014 (V.Sarkar)

Example 1 (contd)

[plele__

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter 03.ppt

21 COMP 322, Spring 2014 (V.Sarkar)

Example 1 (contd)

[plele__

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter 03.ppt

22 COMP 322, Spring 2014 (V.Sarkar)

Example 1 (contd)

q.en(y)

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter 03.ppt

23 COMP 322, Spring 2014 (V.Sarkar)

Example 2

24

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter 03.ppt

COMP 322, Spring 2014 (V.Sarkar)

Example 3

Is this execution linearizable? How many possible linearizations
does it have?

25 COMP 322, Spring 2014 (V.Sarkar) %S

Example 4: execution of a monitor-based
implementation of FIFO queue g

Is this a linearizable execution?

Time || Task A Task B
Invoke q.enq(x)
Work on g.enq(x)
Work on q.enq(x)
Return from q.enq(x)

Invoke q.enq(y)

Work on q.enq(y)
Work on q.enq(y)
Return from q.enq(y)
Invoke q.deq()

Return x from q.deq()

© 00O Ut W N —=O

Yes! Equivalent to “"q.enq(x) : q.enq(y) . q.deq():x"

26 COMP 322, Spring 2014 (V.Sarkar) %

Example 5: Example execution of method
calls on a concurrent FIFO queue q

Is this a linearizable execution?

Time || Task A Task B
0 Invoke q.enq(x)
1 Work on q.enq(x) Invoke q.enq(y)
2 Work on q.enq(x) Return from q.enq(y)
3 Return from q.enq(x)
4 Invoke q.deq()
5 Return x from q.deq()

Yes! Equivalent to “"q.enq(x) : q.enq(y) : q.deq():x"

27

COMP 322, Spring 2014 (V.Sarkar) %

Linearizability of Concurrent Objects
(Summary)

Concurrent object

* A concurrent object is an object that can correctly handle
methods invoked in parallel by different tasks or threads

—Examples: concurrent queue, AtomicInteger

Linearizability

« Assume that each method call takes effect “instantaneously” at
some distinct point in time between its invocation and return.

* An execution is linearizable if we can choose instantaneous
points that are consistent with a sequential execution in which
methods are executed at those points

 An object is linearizable if all its possible executions are
linearizable

28 COMP 322, Spring 2014 (V.Sarkar) D

Worksheet #24:
Linearizability of method calls on a concurrent object

Name: Netid:

Is this a linearizable execution for a FIFO queue, q?

Time || Task A Task B
0 Invoke gq.enq(x)

1 Return from q.enq(x)

2 Invoke q.enq(y)

3 Invoke q.deq() Work on q.enq(y)

4 Work on q.deq() Return from q.enq(y)
5!

Return y from q.deq()

29 COMP 322, Spring 2014 (V.Sarkar) G

