
COMP 322: Fundamentals of
Parallel Programming

Lecture 3: Multiprocessor Scheduling,
Abstract Performance Metrics

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 3 17 January 2014

COMP 322, Spring 2014 (V.Sarkar)2

Ideal Parallelism (Recap)

• Define ideal parallelism of
Computation G Graph as the
ratio, WORK(G)/CPL(G)

• Ideal Parallelism is independent
of the number of processors that
the program executes on, and
only depends on the computation
graph

1

1

1

4 1 4

1 1 1 1

31 1 1

1 1

1

1
Example:
WORK(G) = 26
CPL(G) = 11
Ideal Parallelism = WORK(G)/CPL(G) = 26/11 ~ 2.36

COMP 322, Spring 2014 (V.Sarkar)

Solution to Worksheet 2
(Reverse Engineering a Computation Graph)

3

1.A;
2.finish {
3. async D;
4. B;
5. E;
6. finish {
7. async H;
8. F;
9. } // finish
10. G;
11.} // finish
12.C;

!

COMP 322, Spring 2014 (V.Sarkar)4

Scheduling of a Computation Graph on a
fixed number of processors: Example

1

1

1

4 41

1 1 1

31

1

1

1

1

1

1

1

A
Start
time

Proc
1

Proc
2

Proc
3

0 A
1 B
2 C N
3 D N I
4 D N J
5 D N K
6 D Q L
7 E R M
8 F R O
9 G R P
10 H
11

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

COMP 322, Spring 2014 (V.Sarkar)

Scheduling of a Computation Graph on a
fixed number of processors, P

• Assume that node N takes TIME(N) regardless of which
processor it executes on, and that there is no overhead for
creating parallel tasks

• A schedule specifies the following for each node
—START(N) = start time
—PROC(N) = index of processor in range 1...P

such that
—START(i) + TIME(i) <= START(j), for all CG edges from i

to j (Precedence constraint)
—A node occupies consecutive time slots in a processor (Non-

preemption constraint)
—All nodes assigned to the same processor occupy distinct

time slots (Resource constraint)

5

COMP 322, Spring 2014 (V.Sarkar)6

Greedy Schedule
• A greedy schedule is one that never forces a
processor to be idle when one or more nodes are ready
for execution
• A node is ready for execution if all its predecessors
have been executed
• Observations

—T1 = WORK(G), for all greedy schedules
—T∞ = CPL(G), for all greedy schedules

• where TP = execution time of a schedule for
computation graph G on P processors

COMP 322, Spring 2014 (V.Sarkar)7

Lower Bounds on Execution Time of
Schedules

• Let TP = execution time of a schedule for
computation graph G on P processors
—Can be different for different schedules

• Lower bounds for all greedy schedules
—Capacity bound: TP ≥ WORK(G)/P

—Critical path bound: TP ≥ CPL(G)

• Putting them together
—TP ≥ max(WORK(G)/P, CPL(G))

COMP 322, Spring 2014 (V.Sarkar)8

Upper Bound on Execution Time of Greedy
Schedules

Proof sketch:
Define a time step to be complete if

≥ P nodes are ready at that time,
or incomplete otherwise

complete time steps ≤ WORK(G)/P

incomplete time steps ≤ CPL(G)

Theorem [Graham ’66]. Any
greedy scheduler achieves

TP ≤ WORK(G)/P + CPL(G)

Start
time

Proc
1

Proc
2

Proc
3

0 A
1 B
2 C N
3 D N I
4 D N J
5 D N K
6 D Q L
7 E R M
8 F R O
9 G R P
10 H
11

COMP 322, Spring 2014 (V.Sarkar)9

Bounding the performance of Greedy Schedulers

Combine lower and upper bounds to get

max(WORK(G)/P, CPL(G)) ≤ TP ≤ WORK(G)/P + CPL(G)

Corollary 1: Any greedy scheduler achieves execution
time TP that is within a factor of 2 of the optimal time
(since max(a,b) and (a+b) are within a factor of 2 of
each other, for any a ≥ 0,b ≥ 0).

Corollary 2: Lower and upper bounds approach the
same value whenever

• There’s lots of parallelism, WORK(G)/CPL(G) >> P

• Or there’s little parallelism, WORK(G)/CPL(G) << P

COMP 322, Spring 2014 (V.Sarkar)

Parallel Speedup

• Define Speedup(P) = T1 / TP

—Factor by which the use of P processors speeds
up execution time relative to 1 processor, for a
fixed input size

—For ideal executions without overhead, 1 <=
Speedup(P) <= P

—Linear speedup
– When Speedup(P) = k*P, for some constant k,

0 < k < 1

• Ideal Parallelism = Parallel Speedup on an
unbounded number of processors

10

COMP 322, Spring 2014 (V.Sarkar)11

Abstract Performance Metrics
• Basic Idea

—Count operations of interest, as in big-O analysis
—Abstraction ignores overheads that occur on real systems

• Calls to doWork()
—Programmer inserts calls of the form, perf.doWork(N), within a

step to indicate abstraction execution of N application-specific
abstract operations
– e.g., adds, compares, stencil ops, data structure ops

—Multiple calls dynamically add to the execution time of current
step in computation graph

• Abstract metrics are enabled by calling
—System.setProperty(HjSystemProperty.abstractMetrics.

propertyKey(), "true");
• If an HJ program is executed with this option, abstract

metrics are printed at end of program execution with
WORK(G), CPL(G), Ideal Parallelism = WORK(G)/ CPL(G)

COMP 322, Spring 2014 (V.Sarkar)

Course Announcements
• All Unit 1 lecture and demonstration quizzes are due by Jan 24th

—Quizzes are still being uploaded into edX

• Homework 1 assigned today, and is due on Jan 31st

• Next week’s schedule (Jan 20-24)
—No lecture on Monday (MLK Jr Day)
—No lab next week on Monday or Wednesday
—We will have lectures on Wednesday & Friday as usual

• Course grading rubric (see course wiki for details)
—Six homeworks = 40% total (6.67% per homework)
—Exam 1 = 20% (Take home, assigned Feb 26th, due by Feb 28th)
—Exam 2 = 20% (Take home, assigned April 25th, due by May 2nd)
—edX quizzes = 10% total
—Class participation = 10% total (labs, worksheets, in-class Q&A, Piazza

Q&A, bug reports, demonstration volunteers, ...)

12

