
COMP 322: Fundamentals of
Parallel Programming

Lecture 36: Partitioned Global Address Space
(PGAS) languages

John Mellor-Crummey
Department of Computer Science, Rice University

johnmc@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 36 9 April 2014

Process/Thread
Memory

Parallel Architectures

2

Programming Models

Shared Memory

Habanero-Java
Java Threads

Cilk
OpenMP
Pthreads

MPI
Map-Reduce
UPC
CAF

Distributed Memory

interconnect

Performance Concerns for Distributed Memory
 Data movement and

synchronization are expensive

To minimize overheads

• Co-locate data with processes

• Aggregate multiple accesses
to remote data

• Overlap communication with
computation

⇒ Significant programmability
challenges with addressing
these overheads in a shared-
nothing programming model
like MPI

Distributed Memory

interconnect

3

• Global address space
—one-sided communication (GET/PUT)

• Programmer has control over performance-critical factors
—data distribution and locality control
—computation partitioning
—communication placement

• Data movement and synchronization as language primitives
—amenable to compiler-based communication optimization

• Global view rather than local view

4

simpler than msg passing

lacking in thread-based models

HJ places help with locality
control but not data distribution

Partitioned Global Address Space Languages

Global View Local View (8 processes)

Partitioned Global Address Space Languages

• Unified Parallel C (extension of C)

• Coarray Fortran (extension of Fortran)

• Titanium (extension of early version of Java)

• Related efforts: newer languages developed since 2003 as
part of the DARPA High Productivity Computing Systems
(HPCS) program
—IBM: X10 (foundation for Habanero-Java)
—Cray: Chapel
—Oracle/Sun: Fortress

5

Data Distributions
• Motivation for distributions: partitioning and mapping arrays elements to

processors

• In HJ, distributions are used to map computations for affinity

• For Unified Parallel C (UPC), distributions map data onto distributed-
memory parallel machines (Thread = Place)

Like shared vs. private/local data in HJ, except now each datum also
has an “affinity” with a specific thread/place

Shared

Thread 0

Private 0

Thread
THREADS-1

Private 1 Private
THREADS-1

P
ar

ti
ti

on
ed

G

lo
ba

l
ad

dr
es

s
sp

ac
e

Thread 1

P
ri

va
te

Sp

ac
es

6

Unified Parallel C (UPC)

• An explicit parallel extension of ISO C
—a few extra keywords

– shared, MYTHREAD, THREADS, upc_forall

• Language features
—partitioned global address space for shared data

– part of shared data co-located with each thread
—threads created at application launch

– each bound to a CPU
– each has some private data

—a memory model
– defines semantics of interleaved accesses to shared data

—synchronization primitives
– barriers
– locks
– load/store

7

UPC Execution Model

• Multiple threads working independently in a SPMD fashion
—MYTHREAD specifies thread index (0..THREADS-1)

– Like MPI processes and ranks
—# threads specified at compile-time or program launch

• Partitioned Global Address Space (different from MPI)

• Threads synchronize as necessary using
—synchronization primitives
—shared variables

8

Shared and Private Data

• Static and dynamic memory allocation of each type of data

• Shared objects placed in memory based on affinity
—shared scalars have affinity to thread 0

– here, a scalar means a singleton instance of any type
—elements of shared arrays are allocated round robin among

memory modules co-located with each thread

9

Consider the following data layout directive

shared int y[2 * THREADS + 1];

For THREADS = 3, we get the following cyclic layout

A One-dimensional Shared Array

Thread 0

y[3]

y[0]

y[4]

y[1]

Thread 1

zy[5]

y[2]

Thread 2

y[6]

10

shared int A[4][THREADS];

For THREADS = 3, we get the following cyclic layout

Thread 0

A[0][0]
A[1][0]
A[2][0]
A[3][0]

A[0][1]
A[1][1]
A[2][1]
A[3][1]

A[0][2]
A[1][2]
A[2][2]
A[3][2]

Thread 1 Thread 2

A Multi-dimensional Shared Array

11

Consider the following data layout directives

shared int x; // x has affinity to thread 0
shared int y[THREADS];
int z; // private

For THREADS = 3, we get the following layout

Shared and Private Data

Thread 0

x

z

y[0]

z

y[1]

Thread 1

zz

y[2]

Thread 2

12

Controlling the Layout of Shared Arrays

• Can specify a blocking factor for shared arrays to obtain
block-cyclic distributions
—default block size is 1 element ⇒ cyclic distribution

• Shared arrays are distributed on a block per thread basis,
round robin allocation of block size chunks

• Example layout using block size specifications
—e.g., shared [2] int a[16]

a[0]

a[1]

a[6]

a[7]

a[2]

a[3]

a[8]

a[9]

a[4]

a[5]

a[10]

a[11]

a[12]

a[13]

a[14]

a[15]

Thread 0 Thread 1 Thread 2

block size

13

Blocking of Shared Arrays

• Block size and THREADS determine affinity
—with which thread will a datum be co-located

• Element i of a blocked array has affinity to thread:

€

i
blocksize
"

"
$

% $
modTHREADS

14

Blocking Multi-dimensional Data I

• Manage the interaction between
—contiguous memory layout of C multi-dimensional arrays
—blocking factor for shared layout

• Consider layouts for different block sizes for
—shared [BLOCKSIZE] double grids[N][N];

N

N

Default
BLOCKSIZE=1

Column Blocks
BLOCKSIZE=N/THREADS

Distribution by Row
BLOCKSIZE=N

15

• Consider the data declaration
—shared [3] int A[4][THREADS];

• When THREADS = 4, this results in the following data layout

Blocking Multi-dimensional Data II

A[0][0]
A[0][1]
A[0][2]
A[3][0]
A[3][1]
A[3][2]

A[0][3]
A[1][0]
A[1][1]
A[3][3]

A[1][2]
A[1][3]
A[2][0]

A[2][1]
A[2][2]
A[2][3]

Thread 0 Thread 1 Thread 2 Thread 3

The mapping is not pretty for most blocking factors
16

A Simple UPC Program: Vector Addition

 //vect_add.c
 #include <upc_relaxed.h>

#define N 100*THREADS

shared int v1[N], v2[N], v1plusv2[N];

void main() {
 int i;
 for(i=0; i<N; i++)

 if (MYTHREAD == i % THREADS)
 v1plusv2[i]=v1[i]+v2[i];
}

Iteration #:

v1[0] v1[1]

v1[2] v1[3]

v2[0] v2[1]

v2[2] v2[3]

v1plusv2[0] v1plusv2[1]

v1plusv2[2] v1plusv2[3]

Thread 0

0
2

Thread 1

1
3

…

…

…

S
hared S

pace

Each thread executes each
iteration to check if it has work

17

 A More Efficient Vector Addition

 //vect_add.c
 #include <upc_relaxed.h>

#define N 100*THREADS

shared int v1[N], v2[N], v1plusv2[N];

void main() {
 int i;

 for(i = MYTHREAD; i < N; i += THREADS)
 v1plusv2[i]=v1[i]+v2[i];

}

Iteration #:

Each thread executes only its own iterations

18

v1[0] v1[1]

v1[2] v1[3]

v2[0] v2[1]

v2[2] v2[3]

v1plusv2[0] v1plusv2[1]

v1plusv2[2] v1plusv2[3]

Thread 0

0
2

Thread 1

1
3

…

…

…

S
hared S

pace

Worksharing with upc_forall

• Distributes independent iterations across threads

• Simple C-like syntax and semantics
—upc_forall(init; test; loop; affinity)

• Affinity is used to enable locality control
—usually, map iteration to thread where the iteration’s data resides

• Affinity can be
—an integer expression, or a
—reference to (address of) a shared object

19

• Example 1: explicit affinity using shared references
shared int a[100],b[100], c[100];
int i;
upc_forall (i=0; i<100; i++; &a[i])
 // Execute iteration i at a[i]’s thread/place
 a[i] = b[i] * c[i];

• Example 2: implicit affinity with integer expressions
shared int a[100],b[100], c[100];
int i;
upc_forall (i=0; i<100; i++; i)
 // Execute iteration i at place i%THREADS
 a[i] = b[i] * c[i];

Work Sharing + Affinity with upc_forall

• Both yield a round-robin distribution of iterations
20

v1[0] v1[1]

v1[2] v1[3]

v2[0] v2[1]

v2[2] v2[3]

v1plusv2[0] v1plusv2[1]

v1plusv2[2] v1plusv2[3]

Thread 0

0
2

Thread 1

1
3

…

…

…

S
hared S

pace
thread affinity for work: have
thread i execute iteration i

Vector Addition Using upc_forall

 //vect_add.c
 #include <upc_relaxed.h>

#define N 100*THREADS

shared int v1[N], v2[N], v1plusv2[N];

void main()
{
 int i;
 upc_forall(i = 0; i < N; i++; i)
 v1plusv2[i]=v1[i]+v2[i];
}

Iteration #:

Each thread executes subset of global iteration
space as directed by the affinity clause

21

• Example 3: implicit affinity by chunks
shared int a[100],b[100], c[100];
int i;
upc_forall (i=0; i<100; i++; (i*THREADS)/100)
 a[i] = b[i] * c[i];

• Assuming 4 threads, the following results

3300..39675..99
2200..29650..74
1100..19625..49
00..960..24
i*THREADS/100i*THREADSi

Work Sharing + Affinity with upc_forall

22
Let’s explore this further in worksheet 36!

Matrix-Vector Multiply (Default Distribution)
// vect_mat_mult.c
#include <upc_relaxed.h>

shared int a[THREADS][THREADS];
shared int b[THREADS], c[THREADS];
void main (void) {
 int i, j;
 upc_forall(i = 0; i < THREADS; i++; i) {
 c[i] = 0;
 for (j= 0 ; j < THREADS; j++)
 c[i] += a[i][j]*b[j];
 }
}

23

Matrix-Vector Multiply (Better Distribution)
// vect_mat_mult.c
#include <upc_relaxed.h>

shared [THREADS] int a[THREADS][THREADS];
shared int b[THREADS], c[THREADS];
void main (void) {
 int i, j;
 upc_forall(i = 0 ; i < THREADS ; i++; i) {
 c[i] = 0;
 for (j= 0 ; j< THREADS ; j++)
 c[i] += a[i][j]*b[j];
 }
}

24

Synchronization - Barriers

• Barriers (blocking)
—upc_barrier expr_opt;

– like “next” operation in HJ

• Split-phase barriers (non-blocking)
—upc_notify expr_opt;

– like explicit signal on an HJ phaser
—upc_wait expr_opt;

– note: upc_notify is not blocking upc_wait is
– like explicit wait on an HJ phaser

25

Synchronization - Locks

• Lock primitives
—void upc_lock(upc_lock_t *l)
—int upc_lock_attempt(upc_lock_t *l) // success returns 1
—void upc_unlock(upc_lock_t *l)

• Locks are allocated dynamically, and can be freed

• Locks are properly initialized after they are allocated

26

Application Work in PGAS

• Network simulator in UPC (Steve Hofmeyr, LBNL)

• Barnes-Hut in UPC (Marc Snir et al)

• Landscape analysis
—“Contributing Area Estimation” in UPC
 (Brian Kazian, UCB)

• GTS Shifter in CAF
—Preissl, Wichmann, Long, Shalf,
 Ethier, Koniges (LBNL, Cray, PPPL)

27Slide credit: Kathy Yelick, January 2011

Worksheet #36: UPC data distributions

In the following example from slide 22, assume that each UPC array is distributed by
default across threads with a cyclic distribution. In the space below, identify an
iteration of the upc_forall construct for which all array accesses are local, and an
iteration for which all array accesses are non-local (remote).
Assume THREADS >= 2. Explain your answer in each case.

shared int a[100],b[100], c[100];
int i;
upc_forall (i=0; i<100; i++; (i*THREADS)/100)
 a[i] = b[i] * c[i];

28

Name 1: ___________________ Name 2: ___________________

