COMP 322: Fundamentals of
Parallel Programming

Lecture 33: Task Affinity with Places

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

COMP 322 Lecture 33 14 April 2014

Worksheet #32: MPI Gather

1. MPI.Init(args) ;

2. int myrank = MPI.COMM WORLD.Rank() ;

3. int numProcs = MPI.COMM WORLD.Size() ;

4. int size = ...;

5. int[] sendbuf = new int[size];

6. int[] recvbuf = new int[???];

7. . . . // Each process initializes sendbuf

8. MPI.COMM WORLD.Gather (sendbuf, 0, size, MPI.INT,
9. recvbuf, 0, size, MPI.INT,
10. 0/*root*/);

11. . . .

12. MPI.Finalize();

Question: In the space below, indicate what values should be provided instead
of ??7? in line 6, and why.

Answer:

recvbuf should be allocated with numProcs*size elements for Gather. Since
recvbuf also needs to be allocated in the root, line 6 can be replaced by:

6.int[] recvbuf = (myrank==0) ? new int[numProcs*size] : null;

2 COMP 322, Spring 2014 (V.Sarkar) D

MapReduce Execution
(Recap from Lecture 8)

: t
Fine gr'anular'll1v§)u

tasks: many more L ¢ L l l' i lv
map tasks than
machines

Intermediate | kl:v kl:v k2:v kl:v k3:v kd:v kd:v k35:v kd:v | kl:vk3:v
Bucket sort 1
to get same keys L[[Gmup by KeyjjJ
together

Grouped (kl:v,v,v,v |k2:v |k3:v,v |kd:v,v,v | kS:v

2000 servers =>
x» 200,000 Map Tasks, =
5,000 Reduce tasks

SO
O
o
o

@

Output

3 COMP 322, Spring 2014 (V.Sarkar)

PseudoCode for WordCount
(Recap from Lecture 8)

map (String input key, String input value):
// input key: document name
// input value: document contents
for each word w in input value:
EmitIntermediate(w, "1"); // Produce count of words

N D WN =

7. reduce(String output key, Iterator intermediate values):
8. // output key: a word

9. // intermediate values: a list of counts

10. int result = 0;

11. for each v in intermediate values:

12. result += ParselInt(v); // get integer from key-value
13. Emit (AsString(result));

COMP 322, Spring 2014 (V.Sarkar) %§

An example Memory Hierarchy --- what is
the cost of a Memory Access?

LO: . CPU registers hold words retrieved
Register from L1 cache

L1: L1 cache
Smaller (Static RAM) L1 cache holds cache lines retrieved
faster ' from L2 cache
L2:

costlier
L2 cache
per byte (Static RAM) L2 cache holds cache lines
retrieved from main memory
L3:

Larger, Main memory . _
slower (Dynamic RAM) Mal.n memory holds d.|sk blocks

’ retrieved from local disks
cheaper
per byte L4: Local secondary storage Local disks hold files

(local disks) retrieved from disks on
remote network servers
L5 Remote secondary storage

(tapes, distributed file systems, Web servers)

5

Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx @

Storage Trends

SRAM
Metric 1980 1985 1990 1995 2000 2005 2010 2010:1980
$/MB 19,200 2,900 320 256 100 75 60 320
access (ns) 300 150 35 15 3 2 1.5 200
DRAM
Metric 1980 1985 1990 1995 2000 2005 2010 2010:1980
$/MB 8,000 880 100 30 1 0.1 0.06 130,000
access (ns) 375 200 100 70 60 50 40 9
typical size (MB) 0.064 0.256 4 16 64 2,000 8,000 125,000
Disk
Metric 1980 1985 1990 1995 2000 2005 2010 2010:1980
$/MB 500 100 8 0.30 0.01 0.005 0.0003 1,600,000
access (ms) 87 75 28 10 8 < 3 29
typical size (MB) 1 10 160 1,000 20,000 160,000 1,500,000 1,500,000

6 Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx @

Cache Memories

e Cache memories are small, fast SRAM-based memories managed
automatically in hardware.

—Hold frequently accessed blocks of main memory

e CPU looks first for data in caches (e.g., L1, L2, and L3), then in
main memory.

e Typical system structure:

CPRUCHID e

Register file '

Cache <—> L) ALU

memories |
@ : ~ System bus MemcIry bus

10 (T Mai
bridge memory

Bus interface

7 Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx @a}

Examples of Caching in the Hierarchy

e O ot e ey

g;:z:zfg' Level/Ideally one would desire an indefinitely large memory &y
TLB capacity such that any particular ... word would be immediately
available. ... We are ... forced to recognize the possibility of constructing a
hierarchy of memories, each of which has greater capacity than the preceding
but which is less quickly accessible.
gz‘;gjk A.W. Burks, H. H. Goldstine, and J. von Neumann
Preliminary Discussion of the Logical Design of an !

Browser ca
Web cache Electronic Computing Instrument (1946)

T

Ultimate goal: create a large pool of storage with average cost

per byte that approaches that of the cheap storage near the
bottom of the hierarchy, and average latency that approaches
that of fast storage near the top of the hierarchy.

8 Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx @

Locality

e Principle of Locality:

—Empirical observation: Programs tend to use data and instructions with
addresses near or equal to those they have used recently

e Temporal locality: C)

—Recently referenced items are likely
to be referenced again in the near future

e Spatial locality:

—Items with nearby addresses tend < 2
to be referenced close together in time

—A Java programmer can only influence spatial locality at the intra-object
level

— The garbage collector and memory management system determines
inter-object placement

9 Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx @

Locality Example

sum = 0;

for (i = 0; 1 < n; i++)
sum += a[i];

return sum;

e Data references

—Reference array elements in succession
(stride-1 reference pattern). Spatial locality

—Reference variable sum each iteration. _
Temporal locality

¢ Instruction references
—Reference instructions in sequence.

—Cycle through loop repeatedly. Spatial locality

Temporal locality

10 Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx @

Memory Hierarchy in a Multicore

< Core-pair > B
Core A Core B |1 Core C Core D
Reas Reas i i Reas Reas
L1 L1 L1 L1 ol L1 L1 L1
d-cache i-cache d-cache i-cache E i d-cache i-cache d-cache i-cache

L2 unified cache

L2 unified cache

L3 unified cache

Main memory

Memory hierarchy for a single Intel Xeon Quad-core E5440
HarperTown processor chip

—A SUG@R node contains TWO such chips, for a total of 8 cores

11

COMP 322, Spring 2014 (V.Sarkar) &

Programmer Control of Task Assignment to
Processors

e The parallel programming constructs that we’ve
studied thus far result in tasks that are assigned to

processors dynamically by the HJ runtime system
—Programmer does not worry about task assignment details

e Sometimes, programmer control of task assignment

can lead to significant performance advantages due to
improved locality

e Motivation for HJ “places”

—Provide the programmer a mechanism to restrict task execution
to a subset of processors for improved locality

—Current HJlib implementation supports one level of locality via
places, but future HJlib versions will support hierarchical
places

12 COMP 322, Spring 2014 (V.Sarkar) D

Places in HJ

~ HJ Tasks
HJ programmer defines mapping from
HJ tasks to set of places = l,
= HJ Places
HJ runtime defines mapping from places to
one or more worker Java threads per place l,

< | Java Worker Threads

The option

OS threads
HjSystemProperty.numPlaces.setProperty(p);
HjSystemProperty.numWorkers.setProperty(w); Processor Cores

when executing an HJ program can be used to
specify

p, the number of places

w, the number of worker threads per place
we will abbreviate this as p:w

13 COMP 322, Spring 2014 (V.Sarkar) %

Example of 4:2 option on an 8-core node

(4 places w/ 2 workers per place)

/Cor'e A

Reas

L1

Core B
PlGCC 0 Reas
L1 L1

~

L1

L2 unified cache

ﬂore E

Reas

L1

Core F
Place 2 [Reas
L1 L1

L1

L2 unified cache

{

P

E:Gre C

Core D _

~

Reas Place 1 |Reas
L1 L1 L1 L1
L2 unified cache
5-16‘6 6 _ Core H _
Reas Place 3 Reas
L1 L1 L1 L1
L2 unified cache

AN

14

COMP 322, Spring 2014 (V.Sarkar)

Places in HJlib

here() = place at which current task is executing

numPlaces() = total number of places (runtime constant)
Specified by value of p in runtime option:
HjSystemProperty.numPlaces.setProperty(p);

place(i) = place corresponding to index i
<place-expr=>.toString() returns a string of the form “place(id=0)”
<place-expr=.id() returns the id of the place as an int
asyncAt(P, () -> S)

e (Creates new task to execute statement S at place P

* async(() -> S) is equivalent to asyncAt(here(), () > S)

® Main program task starts at place(0)

Note that here() in a child task refers to the place P at which the child task is
executing, not the place where the parent task is executing

15 COMP 322, Spring 2014 (V.Sarkar) &

Example of 4:2 option on an 8-core node
(4 places w/ 2 workers per place)

asyncAt (place(l), () -> S3);
asyncAt (place(l), () -> S4);
asyncAt (place(1l), () -> S5);

Core D _ \

// Main program starts at place O
asyncAt (place(0), () -> S1);
asyncAt (place(0), () -> S2);

/Cor'e A

Core B _ \ i_ﬂre Cc

Place O

L1

L1

L1

L1

L2 unified cache

(&

=

Place 1

L1

L1

L1

L1

L2 unified cache

ﬂore E _ Core F \iﬂ'ae G _ Core H _ \
Place 2 i Place 3
L1 L1 L1 L1 i L1 L1 L1 L1
U VT f| YT U
L2 unified cache '

L2 unified cache j

_ AN

asyncAt(place(2), () -> S6); asyncAt (place(3), () -> S9);
asyncAt (place(2), () -> 87); asyncAt (place(3), () -> S10);
asyncAt (place(2), () -> S8);

16 COMP 322, Spring 2014 (V.Sarkar) %}&Q

17

Example of 1:8 option
(1 place w/ 8 workers per place)

All async's run at place O when there's only one place!

/Cor'e A

Core B
Reas Reas
L1 L1 L1 L1
L2 unified cache
Core E Core F
Reas Reas
L1 L1 L1 L1
L2 unified cache

~

! i Core C Core D
Reas Reas
L1 L1 L1 L1
L2 unified cache
Place O
| | Core 6 Core H
| Reas Reas
L1 L1 L1 L1
L2 unified cache

=/

COMP 322, Spring 2014 (V.Sarkar)

HJ program with places (pseudocode)

1| class T1 {

2 final place affinity;

3 Coe

4 // T1’s constructor sets affinity to place where instance was created
5 T1() { affinity = here; ... }

6 Coe

7|}

8| . . .

9| finish { // Inter—place parallelism

10 System .out.println (” Parent.place.=.”, here); // Parent task s place
11 for (T1a=. . .) {

12 async at (a.affinity) { // Execute async at place with affinity to a
13 a.foo ();

14 System.out . println (” Child _place_=_", here); // Child task’s place
15 } // async

16 } // for

17| } // finish

18 . . .

18 COMP 322, Spring 2014 (V.Sarkar) D

Chunked Fork-Join Iterative
Averaging Example with Places

1. public void runDistChunkedForkJoin (

2. int iterations, int numChunks, Dist dist) {

3. // dist is a user-defined map from int to HjPlace

4. for (int iter = 0; iter < iterations; iter++) {

5. finish(() -> {

6. forseq (0, numChunks - 1, (jj) -> {

7. asyncAt (dist.get(jj), () -> {

8. forseq (getChunk(l, n, numChunks, jj), (3J) -> {
9. myNew[j] = (myVal[j-1] + myVal[j+1l]) / 2.0;
10. }

11. }) i

12. })i

13. })i

14. double[] temp = myNew; myNew = myVal; myVal = temp;
15. } // for iter

16. }

* Chunk jj is always executed in the same place for each iter
* Method runDistChunkedForkJoin can be called with different values
of distribution parameter d

19 COMP 322, Spring 2014 (V.Sarkar) &

Analyzing Locality of Fork-Join Iterative Averaging
Example with Places

Locality benefits
will be realized
if all instances
of chunk O
execute on the
same core and
reuse data from
the same cache

20 COMP 322, Spring 2014 (V.Sarkar) G

Worksheet #33: impact of distribution on parallel
completion time (instead of locality)

Name: Netid:
1. public void sampleKernel (
2. int iterations, int numChunks, Dist d) {
3. for (int iter = 0; iter < iterations; iter++) {
4. finish(() -> {
5. forseq (0, numChunks - 1, (jj) -> {
6. asyncAt (dist.get(jj), () -> {
7. perf.doWork(jj);
8. // Assume that time to process chunk jj = jj units
9. })i
10. }) i
11. })i
12. double[] temp = myNew; myNew = myVal; myVal = temp;
13. } // for iter

14. } // sample kernel

- Assume an execution with n places, each place with one worker thread
* Will a block or cyclic distribution for d have a smaller abstract completion
time, assuming that all tasks on the same place are serialized?

21 COMP 322, Spring 2014 (V.Sarkar) D

