
COMP 322: Fundamentals of
Parallel Programming

Lecture 5: Futures ---Tasks with
Return Values

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 5 27 January 2014

COMP 322, Spring 2014 (V.Sarkar)

Clarification: IllegalStateException
Question: When I try to run my code I get the following
exception, What does it mean?
java.lang.IllegalStateException: All 40 HJ worker threads are blocked!
[Queued task count=1121]
at
edu.rice.hj.runtime.forkjoin.ForkJoinThreadPool.threadBlockedNotification(
ForkJoinThreadPool.java:99)

Answer: See Piazza post

You can configure HJ to use more worker threads by setting the
following property before calling initializeHabanero():

System.setProperty(HjSystemProperty.maxThreads.propertyKey(),
"100");

2

COMP 322, Spring 2014 (V.Sarkar)

Extending Async Tasks with
Return Values

• Example Scenario in PseudoCode
1. // Parent task creates child async task

2. final future container =

3. async { return computeSum(X, low, mid); };

4. . . .

5. // Later, parent examines the return value

6. int sum = container.get();

• Two issues to be addressed:
1) Distinction between container and value in container (box)
2) Synchronization to avoid race condition in container accesses

3

Parent Task Child Task
container = async {...}
. . .
container.get()

computeSum(...)
return ...

return valuecontainer

COMP 322, Spring 2014 (V.Sarkar)4

HJ Futures: Tasks with Return Values

async { Stmt-Block }

• Creates a new child task
that executes Stmt-Block,
which must terminate with a
return statement and return
value

• Async expression returns a
reference to a container of
type future

Expr.get()
• Evaluates Expr, and blocks if

Expr’s value is unavailable
• Unlike finish which waits for
all tasks in the finish scope, a
get() operation only waits for
the specified async
expression

1. // Parent Task T1 (main program)

2. // Compute sum1 (lower half) and sum2 (upper half) in parallel

3. final future sum1 = async { // Future Task T2

4. int sum = 0;

5. for(int i=0 ; i < X.length/2 ; i++) sum += X[i];

6. return sum;

7. };

8. final future sum2 = async { // Future Task T3

9. int sum = 0;

10. for(int i=X.length/2 ; i < X.length ; i++) sum += X[i];

11. return sum;

12. };

13. //Task T1 waits for Tasks T2 and T3 to complete

14. int total = sum1.get() + sum2.get();

COMP 322, Spring 2014 (V.Sarkar)5

Example: Two-way Parallel Array Sum
using Future Tasks (PseudoCode)

COMP 322, Spring 2014 (V.Sarkar)6

Future Task Declarations and Uses
• Variable of type future is a reference to a future object

—Container for return value from future task
—The reference to the container is also known as a “handle”

• Two operations that can be performed on variable V of type
future:
— Assignment: V1 can be assigned value of type future
— Blocking read: V1.get() waits until the future task referred

to by V1 has completed, and then propagates the return
value

COMP 322, Spring 2014 (V.Sarkar)7

Comparison of Future Task and Regular
Async Versions of Two-Way Array Sum

• Future task version initializes two references to
future objects, sum1 and sum2, and both are
declared as final

• No finish construct needed in this example
—Instead parent task waits for child tasks by performing

sum1.get() and sum2.get()

• Easier to guarantee absence of race conditions in
Future Task version
—No race on sum because it is a local variable in tasks T2 and

T3
—No race on future variables, sum1 and sum2, because of

blocking-read semantics

COMP 322, Spring 2014 (V.Sarkar)8

Reduction Tree Schema for computing
Array Sum in parallel

Question:

• How can we implement this schema using future tasks instead of
async tasks?

1. static int computeSum(int[] X, int lo, int hi) {
2. if (lo > hi) return 0;
3. else if (lo == hi) return X[lo];
4. else {
5. int mid = (lo+hi)/2;
 final sum1 = computeSum(X, lo, mid);
6. final sum2 = computeSum(X, mid+1, hi);
7. // Parent now waits for the container values
8. return sum1 + sum2;
9. }
10. } // computeSum

11. int sum = computeSum(X, 0, X.length-1); // main program

COMP 322, Spring 2014 (V.Sarkar)9

Array Sum using Future Tasks
(Seq version)

Recursive divide-and-conquer pattern

1. static int computeSum(int[] X, int lo, int hi) {
2. if (lo > hi) return 0;
3. else if (lo == hi) return X[lo];
4. else {
5. int mid = (lo+hi)/2;
 final future sum1 =
6. async { return computeSum(X, lo, mid); };
7. final future sum2 =
8. async { return computeSum(X, mid+1, hi); };
9. // Parent now waits for the container values
10. return sum1.get() + sum2.get();
11. }
12. } // computeSum

13. int sum = computeSum(X, 0, X.length-1); // main program

COMP 322, Spring 2014 (V.Sarkar)10

Array Sum using Future Tasks
(two futures per method call)

Recursive divide-and-conquer pattern

1. static int computeSum(int[] X, int lo, int hi) {
2. if (lo > hi) return 0;
3. else if (lo == hi) return X[lo];
4. else {
5. int mid = (lo+hi)/2;
 final future sum1 =
6. async { return computeSum(X, lo, mid); };
7. final sum2 = computeSum(X, mid+1, hi);
8. // Parent now waits for the container values
9. return sum1.get() + sum2;
10. }
11. } // computeSum

12. int sum = computeSum(X, 0, X.length-1); // main program

COMP 322, Spring 2014 (V.Sarkar)11

Array Sum using Future Tasks
(one future per method call)

Recursive divide-and-conquer pattern

COMP 322, Spring 2014 (V.Sarkar)12

Computation Graph Extensions for
Future Tasks

• Since a get() is a blocking operation, it must occur on boundaries
of CG nodes/steps
—May require splitting a statement into sub-statements e.g.,

– 14: int sum = sum1.get() + sum2.get();
 can be split into three sub-statements

– 14a int temp1 = sum1.get();
– 14b int temp2 = sum2.get();
– 14c int sum = temp1 + temp2;

• Spawn edge connects parent task to child future task, as before

• Join edge connects end of future task to Immediately Enclosing
Finish (IEF), as before

• Additional join edges are inserted from end of future task to
each get() operation on future object

COMP 322, Spring 2014 (V.Sarkar)13

Computation Graph for Two-way Parallel
Array Sum using Future Tasks

NOTE: DrHJ’s data race detection tool does not support futures as yet
(it only supports finish, async, and isolated constructs)

COMP 322, Spring 2014 (V.Sarkar)

Course Announcements
• All Unit 1 lecture and demonstration quizzes are due by Jan 24th

—Quizzes are still being uploaded into edX

• Homework 1 assigned today, and is due on Jan 31st

• Next week’s schedule (Jan 20-24)
—No lecture on Monday (MLK Jr Day)
—No lab next week on Monday or Wednesday
—We will have lectures on Wednesday & Friday as usual

• Course grading rubric (see course wiki for details)
—Six homeworks = 40% total (6.67% per homework)
—Exam 1 = 20% (Take home, assigned Feb 26th, due by Feb 28th)
—Exam 2 = 20% (Take home, assigned April 25th, due by May 2nd)
—edX quizzes = 10% total
—Class participation = 10% total (labs, worksheets, in-class Q&A, Piazza

Q&A, bug reports, demonstration volunteers, ...)

14

COMP 322, Spring 2014 (V.Sarkar)15

Worksheet #5: Computation Graphs for
Async-Finish and Future Constructs

A

B C

D E

F

1) Can you write HJ pseudocode with
async-finish constructs that generates
a Computation Graph with the same
ordering constraints as the graph on
the right? If so, provide a sketch of
the program.

2) Can you write HJ pseudocode with
future async-get constructs that
generates a Computation Graph with
the same ordering constraints as the
graph on the right? If so, provide a
sketch of the program.

Use the space below for your answers

Name: ___________________ Netid: ___________________

