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Clarification: IllegalStateException
Question: When I try to run my code I get the following 
exception, What does it mean?
java.lang.IllegalStateException: All 40 HJ worker threads are blocked! 
[Queued task count=1121]
at 
edu.rice.hj.runtime.forkjoin.ForkJoinThreadPool.threadBlockedNotification(
ForkJoinThreadPool.java:99) 

Answer: See Piazza post

You can configure HJ to use more worker threads by setting the 
following property before calling initializeHabanero():

System.setProperty(HjSystemProperty.maxThreads.propertyKey(), 
"100");
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Extending Async Tasks with 
Return Values

• Example Scenario in PseudoCode
1. // Parent task creates child async task

2. final future container = 

3.                   async { return computeSum(X, low, mid); };

4. . . .

5. // Later, parent examines the return value

6. int sum = container.get();

• Two issues to be addressed:
1) Distinction between container and value in container (box)
2) Synchronization to avoid race condition in container accesses
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Parent Task Child Task
container = async {...}
. . .
container.get()

computeSum(...)
return ...

return valuecontainer
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HJ Futures: Tasks with Return Values

async { Stmt-Block }

• Creates a new child task 
that executes Stmt-Block, 
which must terminate with a 
return statement and return 
value

• Async expression returns a 
reference to a container of 
type future

Expr.get()
• Evaluates Expr, and blocks if 

Expr’s value is unavailable
• Unlike finish which waits for 
all tasks in the finish scope, a 
get() operation only waits for 
the specified async 
expression



1.  // Parent Task T1 (main program)

2.  // Compute sum1 (lower half) and sum2 (upper half) in parallel

3.  final future sum1 = async { // Future Task T2

4.    int sum = 0; 

5.    for(int i=0 ; i < X.length/2 ; i++) sum += X[i];

6.    return sum;

7.  }; 

8.  final future sum2 = async { // Future Task T3

9.    int sum = 0; 

10.   for(int i=X.length/2 ; i < X.length ; i++) sum += X[i];

11.   return sum;

12. }; 

13. //Task T1 waits for Tasks T2 and T3 to complete

14. int total = sum1.get() + sum2.get();
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Example: Two-way Parallel Array Sum
using Future Tasks (PseudoCode)
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Future Task Declarations and Uses
• Variable of type future is a reference to a future object

—Container for return value from future task
—The reference to the container is also known as a “handle” 

• Two operations that can be performed on variable V of type 
future:
— Assignment: V1 can be assigned value of type future
— Blocking read: V1.get() waits until the future task referred 

to by V1 has completed, and then propagates the return 
value
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Comparison of Future Task and Regular 
Async Versions of Two-Way Array Sum

• Future task version initializes two references to 
future objects, sum1 and sum2, and both are 
declared as final

• No finish construct needed in this example
—Instead parent task waits for child tasks by performing 

sum1.get() and sum2.get()

• Easier to guarantee absence of race conditions in 
Future Task version
—No race on sum because it is a local variable in tasks T2 and 

T3
—No race on future variables, sum1 and sum2, because of 

blocking-read semantics 
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Reduction Tree Schema for computing 
Array Sum in parallel

Question:

• How can we implement this schema using future tasks instead of 
async tasks?



1.  static int computeSum(int[] X, int lo, int hi) {
2.    if ( lo > hi ) return 0;
3.    else if ( lo == hi ) return X[lo];
4.    else {
5.      int mid = (lo+hi)/2;
        final sum1 = computeSum(X, lo, mid);
6.      final sum2 = computeSum(X, mid+1, hi);
7.     // Parent now waits for the container values
8.      return sum1 + sum2;
9.    }
10.  } // computeSum

11. int sum = computeSum(X, 0, X.length-1); // main program
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Array Sum using Future Tasks 
(Seq version)

Recursive divide-and-conquer pattern



1.  static int computeSum(int[] X, int lo, int hi) {
2.    if ( lo > hi ) return 0;
3.    else if ( lo == hi ) return X[lo];
4.    else {
5.      int mid = (lo+hi)/2;
        final future sum1 = 
6.            async { return computeSum(X, lo, mid); };
7.      final future sum2 =
8.           async { return computeSum(X, mid+1, hi); };
9.     // Parent now waits for the container values
10.     return sum1.get() + sum2.get();
11.    }
12.  } // computeSum

13. int sum = computeSum(X, 0, X.length-1); // main program
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Array Sum using Future Tasks
(two futures per method call)

Recursive divide-and-conquer pattern



1.  static int computeSum(int[] X, int lo, int hi) {
2.    if ( lo > hi ) return 0;
3.    else if ( lo == hi ) return X[lo];
4.    else {
5.      int mid = (lo+hi)/2;
        final future sum1 = 
6.            async { return computeSum(X, lo, mid); };
7.      final sum2 = computeSum(X, mid+1, hi);
8.     // Parent now waits for the container values
9.     return sum1.get() + sum2;
10.    }
11.  } // computeSum

12. int sum = computeSum(X, 0, X.length-1); // main program
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Array Sum using Future Tasks 
(one future per method call)

Recursive divide-and-conquer pattern
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Computation Graph Extensions for 
Future Tasks

• Since a get() is a blocking operation, it must occur on boundaries 
of CG nodes/steps
—May require splitting a statement into sub-statements e.g.,

– 14:    int sum = sum1.get() + sum2.get();
 can be split into three sub-statements

– 14a    int temp1 = sum1.get();
– 14b    int temp2 = sum2.get();
– 14c    int sum = temp1 + temp2; 

• Spawn edge connects parent task to child future task, as before

• Join edge connects end of future task to Immediately Enclosing 
Finish (IEF), as before

• Additional join edges are inserted from end of future task to 
each get() operation on future object
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Computation Graph for Two-way Parallel 
Array Sum using Future Tasks

NOTE: DrHJ’s data race detection tool does not support futures as yet 
(it only supports finish, async, and isolated constructs)
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Course Announcements
• All Unit 1 lecture and demonstration quizzes are due by Jan 24th

—Quizzes are still being uploaded into edX 

• Homework 1 assigned today, and is due on Jan 31st

• Next week’s schedule (Jan 20-24)
—No lecture on Monday (MLK Jr Day)
—No lab next week on Monday or Wednesday
—We will have lectures on Wednesday & Friday as usual

• Course grading rubric (see course wiki for details)
—Six homeworks = 40% total (6.67% per homework)
—Exam 1 = 20% (Take home, assigned Feb 26th, due by Feb 28th)
—Exam 2 = 20% (Take home, assigned April 25th, due by May 2nd)
—edX quizzes = 10% total
—Class participation = 10% total (labs, worksheets, in-class Q&A, Piazza 

Q&A, bug reports, demonstration volunteers, ...) 
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Worksheet #5: Computation Graphs for 
Async-Finish and Future Constructs

A

B C

D E

F

1) Can you write HJ pseudocode with 
async-finish constructs that generates 
a Computation Graph with the same 
ordering constraints as the graph on 
the right?  If so, provide a sketch of 
the program.

2) Can you write HJ pseudocode with 
future async-get constructs that 
generates a Computation Graph with 
the same ordering constraints as the 
graph on the right?  If so, provide a 
sketch of the program.

Use the space below for your answers

Name: ___________________          Netid: ___________________


