
COMP 322: Fundamentals of
Parallel Programming

Lecture 6: Parallel N-Queens algorithm,
Finish Accumulators

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 6 29 January 2014

COMP 322, Spring 2014 (V.Sarkar)2

Worksheet #5 solution: Computation Graphs
for Async-Finish and Future Constructs

A

B C

D E

F

1) Can you write an HJ
program with async-finish
constructs that generates a
Computation Graph with the
same ordering constraints as
the graph on the right?
No

2) Can you write an HJ
program with future async-
get constructs that generates
a Computation Graph with
the same ordering
constraints as the graph on
the right? If so, provide a
sketch of the program.
Yes, see program sketch with
void futures. A dummy
return value can also be
used.

COMP 322, Spring 2014 (V.Sarkar)

Worksheet #5 solution (contd)

3

1. final HjFuture<Void> A =

2. future(() -> { return null; });

3. final HjFuture<Void> B =

4. future(() -> { A.get(); return null; });

5. final HjFuture<Void> C =

6. future(() -> { A.get(); return null;});

7. final HjFuture<Void> D =

8. future(() -> { B.get(); C.get(); return null; });

9. final HjFuture<Void> E =

10. future(() -> {C.get(); return null; });

11.final HjFuture<Void> F =

12. future(() -> { D.get(); E.get(); return null; });

13.F.get();

COMP 322, Spring 2014 (V.Sarkar)

The N-Queens Problem

How can we place n queens on an n×n chessboard
so that no two queens can capture each other?

Q
x
x
x

x
x

x

xx

x

xx

x
x

x
xx

x
x
x
xx

x
x

x
x

x
x

A queen can move any number of
squares horizontally, vertically, and
diagonally.
Here, the possible target squares of the
queen Q are marked with an x.

COMP 322, Spring 2014 (V.Sarkar)

Decision Trees
• In any solution of the n-queens problem, there must be exactly one

queen in each column of the board.

• Otherwise, the two queens in the same column could capture each other.

• Therefore, we can describe the solution of this problem as a sequence
of n decisions:

• Decision 1: Place a queen in the first column.

• Decision 2: Place a queen in the second column.

• .
.
.

Decision n: Place a queen in the n-th column.

• Since there are multiple choices for each decision, we get a “decision
tree”

5

COMP 322, Spring 2014 (V.Sarkar)

Decision Tree

Q
Q

Q

Q

Q

Q
Q

Q

place 1st queen

place 2nd queen

empty board a = []

a = [0] a = [1]

a = [0 2] a = [0 3] a = [1 3]

COMP 322, Spring 2014 (V.Sarkar)

Backtracking in Decision Trees
• There are problems that require us to perform an exhaustive

search of all possible sequences of decisions in order to find
the solution.

• We can solve such problems by constructing the complete
decision tree and then find a path from its root to a leaf that
corresponds to a solution of the problem

• In many cases, the efficiency of this procedure can be
dramatically increased by a technique called backtracking
(depth-first search).

7

COMP 322, Spring 2014 (V.Sarkar)

Backtracking and Decision Tree states
• Idea: Start at the root of the decision tree and move

downwards, that is, make a sequence of decisions, until you
either reach a solution or you enter a state from where no
solution can be reached by any further sequence of decisions.

• In the latter case, backtrack to the parent of the current
state and take a different path downwards from there. If all
paths from this state have already been explored, backtrack to
its parent.

• Continue this procedure until you find a solution (or all
solutions), or establish that no solution exists.

• A state in the decision tree can be encoded as an array,
a[0..c-1] for c columns, where a[i] = row position of queen in
column i.

8

COMP 322, Spring 2014 (V.Sarkar)

Backtracking in Decision Trees

Q
Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q
Q

Q

Q

Q
Q

Q

place 1st queen

place 2nd queen

place 3rd queen

place 4th queen

empty board a = []

a = [0] a = [1]

a = [0 2] a = [0 3] a = [1 3]

a = [0 3 1]
a = [1 3 0]

a = [1 3 0 2]

COMP 322, Spring 2014 (V.Sarkar)

Sequential solution for NQueens
(counting all solutions)

1. static int count;

2. . . .

3. count = 0;

4. nqueens_kernel(new int[0], 0);

5. System.out.println(“No. of solutions = “ + count);

6. . . .

7. void nqueens_kernel(int [] a, int depth) {

8. if (size == depth) count++;

9. else

10. /* try each possible position for queen at depth */

11. for (int i = 0; i < size; i++) {

12. /* allocate a temporary array and copy array a into it */

13. int [] b = new int [depth+1];

14. System.arraycopy(a, 0, b, 0, depth);

15. b[depth] = i;

16. if (ok(depth+1,b)) nqueens_kernel(b, depth+1);

17. } // for-async

18. } // nqueens_kernel()

10

COMP 322, Spring 2014 (V.Sarkar)

Parallel Solution to NQueens Problem?
1. static accumulator count;

2. . . .

3. count = 0;

4. finish nqueens_kernel(new int[0], 0);

5. System.out.println(“No. of solutions = “ + count);

6. . . .

7. void nqueens_kernel(int [] a, int depth) {

8. if (size == depth) count++;;

9. else

10. /* try each possible position for queen at depth */

11. for (int i = 0; i < size; i++) async {

12. /* allocate a temporary array and copy array a into it */

13. int [] b = new int [depth+1];

14. System.arraycopy(a, 0, b, 0, depth);

15. b[depth] = i;

16. if (ok(depth+1,b)) nqueens_kernel(b, depth+1);

17. } // for-async

18. } // nqueens_kernel()

11

COMP 322, Spring 2014 (V.Sarkar)

Parallel NQueens Example
1. // Challenge: how to count number of solutions found?

2.

3. finish nqueens_kernel(new int[0], 0);

4. System.out.println(“No. of solutions = “ ...);

5. . . .

6. void nqueens_kernel(int [] a, int depth) {

7. if (size == depth) // Solution found: how to count?

8. else

9. /* try each possible position for queen at depth */

10. for (int i = 0; i < size; i++) async {

11. /* allocate a temporary array and copy array a into it */

12. int [] b = new int [depth+1];

13. System.arraycopy(a, 0, b, 0, depth);

14. b[depth] = i;

15. if (ok(depth+1,b)) nqueens_kernel(b, depth+1);

16. } // for-async

17. } // nqueens_kernel()

12

COMP 322, Spring 2014 (V.Sarkar)

Finish Accumulators in HJ
(Pseudocode)

• Creation
 accumulator ac = newFinishAccumulator(operator, type);

– operator can be Operator.SUM, Operator.PROD, Operator.MIN, Operator.MAX or
Operator.CUSTOM

– type can be int.class or double.class for standard operators or any object that
implements a “reducible” interface for CUSTOM

• Registration
 finish (ac1, ac2, ...) { ... }

– Accumulators ac1, ac2, ... are registered with the finish scope

• Accumulation

 ac.put(data);
– can be performed by any statement in finish scope that registers ac

• Retrieval

 ac.get();
– get() is nonblocking because finish provides the necessary synchronization

Either returns initial value before end-finish or final value after end-finish
– result from get() will be deterministic if CUSTOM operator is associative and

commutative

13

COMP 322, Spring 2014 (V.Sarkar)

1. Non-owner task cannot access accumulators outside registered finish
// T1 allocates accumulator a

accumulator a = newFinishAccumulator(...);

async { // T2 cannot access a

 a.put(1); Number v1 = a.get();

}

2. Non-owner task cannot register accumulators with a finish
// T1 allocates accumulator a

accumulator a = newFinishAccumulator(...);

async {

 // T2 cannot register a with finish

 finish (a) { async a.put(1); }

}

14

Error Conditions with Finish Accumulators

COMP 322, Spring 2014 (V.Sarkar)

Use of Finish Accumulators to count solutions
in Parallel NQueens

1. final FinishAccumulator ac =

2. newFinishAccumulator(Operator.SUM, int.class);

3. finish(ac) nqueens_kernel(new int[0], 0);

4. System.out.println(“No. of solutions = “ + ac.get().intValue())

5. . . .

6. void nqueens_kernel(int [] a, int depth) {

7. if (size == depth) ac.put(1);

8. else

9. /* try each possible position for queen at depth */

10. for (int i = 0; i < size; i++) async {

11. /* allocate a temporary array and copy array a into it */

12. int [] b = new int [depth+1];

13. System.arraycopy(a, 0, b, 0, depth);

14. b[depth] = i;

15. if (ok(depth+1,b)) nqueens_kernel(b, depth+1);

16. } // for-async

17. } // nqueens_kernel()

15

COMP 322, Spring 2014 (V.Sarkar)

Course Announcements
• Homework 1 is due on Jan 31st

—10% per day penalty for late submissions

• Course grading rubric (see course wiki for details)
—Six homeworks = 40% total (6.67% per homework)
—Exam 1 = 20% (Take home, assigned Feb 26th, due by Feb 28th)
—Exam 2 = 20% (Take home, assigned April 25th, due by May 2nd)
—edX quizzes = 10% total
—Class participation = 10% total (labs, worksheets, in-class Q&A, Piazza

Q&A, bug reports, demonstration volunteers, ...)

16

