
COMP 322: Fundamentals of
Parallel Programming

Lecture 7: Data Races,
Functional & Structural Determinism

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 7 31 January 2014

COMP 322, Spring 2013 (V.Sarkar)2

Worksheet #6 solution: Why must
Future References be declared as final?

Consider the pseudocode on the right
with futures declared as non-final static
fields. Is there a possible execution in
which a deadlock situation may occur
between tasks T1 and T2 with this code
(with each task waiting on the other due
to get() operations)? Explain why or
why not.
Yes, a deadlock can occur when future
f1 does f2.get() and future f2 does
f1.get().

WARNING: such “spin” loops are an
example of bad parallel programming
practice in application code. Their
semantics depends on the “memory
model”. In the Java memory model,
there’s no guarantee that the above
spin loops will ever terminate.

deadlock

1. static future f1=null;

2. static future f2=null;

3.

4. void main(String[] args) {

5. f1 = async {return a1();};

6. f2 = async {return a2();};

7. }

8.

9. int a1() { // Task T1

10. while (f2 == null); // spin loop

11. return f2.get(); //T1 waits for T2

12. }

13.

14. int a2() { // Task T2

15. while (f1 == null); // spin loop

16. return f1.get(); //T2 waits for T1

17. }

COMP 322, Spring 2013 (V.Sarkar)3

Why should Future References be
declared as final?

1. final future f1 =

2. async {return a1();};

3. final future f2 =

4. async {return a2(f1);};

5. }

6.

7. int a1() {

8. // Task T1 cannot receive a

9. // reference to f2

10. . . .

11. }

12.

13. int a2(futuref1) {

14. // Task T2 can refer

15. // to f1 but that won’t cause

16. // a deadlock.

17. ... f1.get() ...

18. }

Now consider a modified version of the
above code in which futures are
declared as final local variables (which
is permitted in HJ). Can you add get()
operations to methods a1() and a2() to
create a deadlock between tasks T1 and
T2 with this code? Explain why or why
not.

No, the final declarations make it
impossible for future f1’s task (T1) to
receive a reference to f2.

Will your answer be different if f1 and f2
are final fields in objects or final static
fields?

No.

COMP 322, Spring 2013 (V.Sarkar)

Parallel Programming Challenges
• Correctness

—New classes of bugs can arise in parallel programming, relative to
sequential programming
– Data races, deadlock, nondeterminism

• Performance
—Performance of parallel program depends on underlying parallel system

– Language compiler and runtime system
– Processor structure and memory hierarchy
– Degree of parallelism in program vs. hardware

• Portability
—A buggy program that runs correctly on one system may not run

correctly on another (or even when re-executed on the same system)
—A parallel program that performs well on one system may perform

poorly on another

4

COMP 322, Spring 2014 (V.Sarkar)

What happens if we forget a finish?

5

1. // Start of Task T0 (main program)

2. sum1 = 0; sum2 = 0; // sum1 & sum2 are static fields

3. async { // Task T0 computes sum of lower half of array

4. for(int i=0; i < X.length/2; i++)

5. sum1 += X[i];

6. }

7. async { // Task T1 computes sum of upper half of array

8. for(int i=X.length/2; i < X.length; i++)

9. sum2 += X[i];

10. }

11. // Task T0 waits for Task T1 (join)

12. return sum1 + sum2;

Data race between accesses of sum1 in async and in main program

COMP 322, Spring 2013 (V.Sarkar)6

Formal Definition of Data Races
 A data race occurs on location L in a program execution with

computation graph CG if there exist steps (nodes) S1 and S2
in CG such that:
1. S1 does not depend on S2 and S2 does not depend on S1

i.e., there is no path of dependence edges from S1 to S2 or
from S2 to S1 in CG, and

2. Both S1 and S2 read or write L, and at least one of the
accesses is a write. (L must be a shared location i.e., a
static field, instance field, or array element.)

• A program is data-race-free it cannot exhibit a data race for
any input

• Above definition includes all “potential” data races i.e., it’s
considered a data race even if S1 and S2 execute on the same
processor

COMP 322, Spring 2013 (V.Sarkar)7

Four Observations related to Data Races
1. Immutability property: there cannot be a data race on shared

immutable data.
— A location, L, is immutable if it is only written during initialization, and

can only be read after initialization. In this case, no read can potentially
execute in parallel with the write.

• Parallel programming tip: use immutable objects and arrays to avoid
data races
—Will require making copies of objects and arrays for updates
—Copying overhead may be prohibitive in some cases, but acceptable in

others
—NOTE: future values are also immutable

• Example with java.lang.String
1. finish {

2. String s1 = "XYZ";

3. async { String s2 = s1.toLowerCase(); ... }

4. System.out.println(s1);

5. }

COMP 322, Spring 2013 (V.Sarkar)8

“hi”“high”

Example of a Mutable Object

• If an object is modified, all references to the object
see the new value

sb
java.lang.StringBuffer

tb

StringBuffer sb = new (“hi”);
StringBuffer tb = sb;
tb.append (“gh”);Stack Frame

Heap Object

COMP 322, Spring 2013 (V.Sarkar)9

Observations
2. Single-task ownership property: there cannot be a data race on a

location that is only read or written by a single task.
— Define: step S in computation graph CG “owns” location L if S

performs a read or write access on L. If step S belongs to Task T, we
can also say that Task T owns L when executing S.

— Consider a location L that is only owned by steps that belong to the
same task, T. Since all steps in Task T must be connected by
continue edges in CG, all reads and writes to L must be ordered by
the dependences in CG. Therefore, no data race is possible on
location L.

• Parallel programming tip: if an object or array needs to be written
multiple times after initialization, then try and restrict its
ownership to a single task.
— Will require making copies when sharing the object or array with

other tasks.

COMP 322, Spring 2013 (V.Sarkar)10

Example of Single-task ownership
with Copying

• If an object or array needs to be written multiple times after initialization,
then try and restrict its ownership to a single task.
—Entails making copies when sharing the object with other tasks.
—As with Immutability, copying overhead may be prohibitive in some cases, but

acceptable in others.

• Example
1.finish { // Task T1 owns A

2. int[] A = new int[n]; // ... initialize array A ...

3. // create a copy of array A in B

4. int[] B = new int[A.length]; System.arraycopy(A,0,B,0,A.length);

5. async { // Task T2 owns B

6. int sum = computeSum(B,0,B.length-1);// Modifies B as in ArraySum1

7. System.out.println("sum = " + sum);

8. }

9. // ... update Array A ...

10. System.out.println(Arrays.toString(A)); //printed by task T1

11.}

COMP 322, Spring 2013 (V.Sarkar)11

Observations (contd)
3. Ownership-transfer property: there cannot be a data race on a

location if all steps that read or write it are totally ordered in CG
(i.e., if the steps belong to a single directed path)

— Think of the ownership of L being ``transferred'' from one step to
another, even across task boundaries, as execution follows the path
of dependence edges in the total order.

• Parallel programming tip:
— If an object or array needs to be written multiple times after

initialization and also accessed by multiple tasks, then try and
ensure that all the steps that read or write a location L in the object/
array are totally ordered by dependences in CG.

– Ownership transfer is even necessary to support single-task
ownership. In the previous example, since Task T1 initializes
array B as a copy of array A, T1 is the original owner of A. The
ownership of B is then transferred from T1 to T2 when Task T2 is
created.

COMP 322, Spring 2013 (V.Sarkar)12

Observations (contd)
4. Local-variable ownership property: there cannot be a data race

on a local variable.
— If L is a local variable, it can only be written by the task in which it is

declared (L's owner). The “implicitly final” semantics for accessing
outer local variables ensures that there is no race condition between
the read access in the child task and the write access in L’s owner
(parent task).

• Parallel programming tip:
— You do not need to worry about data races on local variables, since

they are not possible. However, local variables in Java are restricted
to contain primitive data types (such as int) and references to
objects and arrays. In the case of object/array references, be aware
that there may be a data race on the underlying object even if there
is no data race on the local variable that refers to (points to) the
object.

COMP 322, Spring 2013 (V.Sarkar)

static
fields

SHARED

Local vars

PRIVATE

heap
data:

objects,
arrays

SHARED

Local vars

PRIVATE

Recap of Java’s Storage Model
Java’s storage model contains three memory regions:

1. Static Data: region of memory reserved for
variables that are not allocated or destroyed during
a class’ lifetime, such as static fields.
• Static fields can be shared among threads/tasks

2. Heap Data: region of memory for dynamically
allocated objects and arrays (created by “new”).
• Heap data can be shared among threads/tasks

3. Stack Data: Each time you call a method, Java
allocates a new block of memory called a stack
frame to hold its local variables
• Local variables are private to a given thread/task

All references (pointers) must point to heap data --- no
references can point to static or stack data

. . .

13

COMP 322, Spring 2013 (V.Sarkar)

Functional vs. Structural Determinism

• A parallel program is said to be functionally
deterministic if it always computes the same
answer when given the same input

• A parallel program is said to be structurally
deterministic if it always produces the same
computation graph when given the same input

• Race-Free Determinism
—If a parallel program is written using the

constructs learned so far (finish, async,
futures) and is known to be race-free, then it
must be both functionally deterministic and
structurally deterministic

14

COMP 322, Spring 2013 (V.Sarkar)

V1: Functional + Structural Determinism
(No data race)

1. // Count all occurrences
2. a = new ACCUM
3. finish(a) for (int i = 0; i <= N - M; i+

+)
4. async {
5. for (j = 0; j < M; j++)
6. if (text[i+j] != pattern[j]) break;
7. if (j == M) a.put(1); // found
8. }
9. print a.get();

15

COMP 322, Spring 2013 (V.Sarkar)

V2: Functional + Structural Determinism
(Benign data race)

1. // Existence of an occurrence
2. found = false
3. finish for (int i = 0; i <= N - M; i++)
4. async {
5. for (j = 0; j < M; j++)
6. if (text[i+j] != pattern[j]) break;
7. if (j == M) found = true;
8. }
9. print found

16

COMP 322, Spring 2013 (V.Sarkar)

V3: Functional Nondeterminism +
Structural Determinism

 // Index of an occurrence
1. static int index = -1; // static field
2. . . .
3. finish for (int i = 0; i <= N - M; i++)

async {
4. for (j = 0; j < M; j++)
5. if (text[i+j] != pattern[j]) break;
6. if (j == M) index = i; // found at i
7. }

17

COMP 322, Spring 2013 (V.Sarkar)

V4: Functionally Deterministic +
Structurally Nondeterministic

18

1. static boolean found = false; //static field

2. . . .

3. finish for (int i = 0; i <= N - M; i++) {

4. if (found) break; // Eureka!

5. async {

6. for (j = 0; j < M; j++)

7. if (text[i+j] != pattern[j]) break;

8. if (j == M) found = true;

9. } // async

10. } // finish-for

COMP 322, Spring 2013 (V.Sarkar)

V5: Functionally Nondeterministic +
Structurally Nondeterministic

19

1. static int index = -1; // static field
2. . . .
3. finish for (int i = 0; i <= N - M; i++) {

4. if (index != -1) break; // Eureka!

5. async {

6. for (j = 0; j < M; j++)

7. if (text[i+j] != pattern[j]) break;

8. if (j == M) index = i;

9. } // async

10. } // finish-for

COMP 322, Spring 2013 (V.Sarkar)

A Classification of Parallel Programs

20

Data Race
Free?

Functionally
Deterministic?

Structurally
Deterministic?

Example: String Search
variation

Yes Yes Yes Count of all occurrences
No Yes Yes Existence of an occurrence
No No Yes Index of any occurrence
No Yes No “Eureka” extension for

existence of an occurrence: do
not create more async tasks
after occurrence is found

No No No “Eureka” extension for index of
an occurrence: do not create
more async tasks after
occurrence is found

Data-Race-Free Determinism Property implies that it is not possible to write an
HJ program with Yes in column 1, and No in column 2 or column 3 (when only
using Module 1 constructs)

