
COMP 322 Spring 2015

Lab 10: Actors
Instructor: Vivek Sarkar

Course wiki : https://wiki.rice.edu/confluence/display/PARPROG/COMP322

Staff Email : comp322-staff@mailman.rice.edu

Importants tips and links

edX site : https://edge.edx.org/courses/RiceX/COMP322/1T2014R

Piazza site : https://piazza.com/rice/spring2015/comp322/home

Java 8 Download : https://jdk8.java.net/download.html

Maven Download : http://maven.apache.org/download.cgi

IntelliJ IDEA : http://www.jetbrains.com/idea/download/

HJlib Jar File : http://www.cs.rice.edu/~vs3/hjlib/code/maven-repo/edu/rice/hjlib-cooperative/

0.1.5-SNAPSHOT/hjlib-cooperative-0.1.5-SNAPSHOT.jar

HJlib API Documentation : https://wiki.rice.edu/confluence/display/PARPROG/API+Documentation

HelloWorld Project : https://wiki.rice.edu/confluence/pages/viewpage.action?pageId=14433124

1 HJlib Actors

HJlib actors were introduced in Lectures 23–24. An actor class is defined by extending the
edu.rice.hj.runtime.actors.Actor class. Concrete sub-classes of Actor are required to implement the
process() method.

The following code snippet shows the schema for defining an actor class:

1 import edu . rice . hj . runtime . actors . Actor ;
2 pub l i c c l a s s EchoActor extends Actor<Object> {
3 protec ted void process ( Object aMessage ) {
4 . . .
5 } }

Method calls can be invoked on actor objects, and they work just like method calls on any other HJlib
objects. However, what distinguishes actors from normal objects is that they can be activated by the
start() method, after which the HJlib runtime ensures that the actor’s process() method is called in
sequence for each message sent to the actor’s mailbox. The actor can terminate itself by calling exit() in
a process() call.

Messages can be sent to actors from actor code or non-actor code by invoking the actor’s send() method using
a call as follows, “ someActor.send(aMessage)”. A send() operation is non-blocking and asynchronous.
The HJlib Actor library preserves the order of messages with the same sender and receiver, but messages
from different senders may be interleaved in an arbitrary order.

As mentioned in the lectures, there are three basic states for an actor:

1 of 4

https://wiki.rice.edu/confluence/display/PARPROG/COMP322
mailto:comp322-staff@mailman.rice.edu
https://edge.edx.org/courses/RiceX/COMP322/1T2014R
https://piazza.com/rice/spring2015/comp322/home
https://jdk8.java.net/download.html
http://maven.apache.org/download.cgi
http://www.jetbrains.com/idea/download/
http://www.cs.rice.edu/~vs3/hjlib/code/maven-repo/edu/rice/hjlib-cooperative/0.1.5-SNAPSHOT/hjlib-cooperative-0.1.5-SNAPSHOT.jar
http://www.cs.rice.edu/~vs3/hjlib/code/maven-repo/edu/rice/hjlib-cooperative/0.1.5-SNAPSHOT/hjlib-cooperative-0.1.5-SNAPSHOT.jar
https://wiki.rice.edu/confluence/display/PARPROG/API+Documentation
https://wiki.rice.edu/confluence/pages/viewpage.action?pageId=14433124


COMP 322
Spring 2015

Lab 10: Actors

• new: when an instance of an actor is created, it is in the new state. In this state, an HJlib actor will
receive messages sent to its mailbox but will not process them.

• started: in this state, the actor will process all messages in its mailbox, one at a time. It will keep
doing so until it decides to terminate. In HJlib, an actor is started by invoking its start() method:
e.g., “myActor.start()”.

• terminated: in this state the actor has decided it will no longer process any more messages. Once
terminated, an actor cannot be restarted. An actor requests termination by calling its exit() method,
which changes the actor’s state to terminated after the process() call containing exit() returns. Note
that the exit() call does not itself result in an immediate termination of the process() call; it just
ensures that no subsequent process() calls will be processed.

All async tasks created internally within an actor are registered on the finish scope that contained the
actor’s start() operation. The finish scope will block until all actors started within it terminate. This is
similar to the finish semantics while dealing with asyncs.

The following HelloWorld example was discussed in Lecture 23, and is also available in HelloWorld.java:

1 import edu . rice . hj . runtime . actors . Actor ;
2
3 pub l i c c l a s s HelloWorld {
4 pub l i c s t a t i c void main ( f i n a l String [ ] args ) {
5 EchoActor actor = new EchoActor ( ) ;
6 finish ( ( ) −> {
7 actor . start ( ) ; // ac to r a t tache s i t s e l f to f i n i s h scope
8 // we are guaranteed ordered sends , i . e . though He l lo and ←↩

World w i l l be
9 // proce s sed asynchronously , they w i l l be proce s sed in that ←↩

order
10 actor . send ( ”He l lo ” ) ;
11 actor . send ( ”World” ) ;
12 actor . send ( EchoActor . STOP_MSG ) ;
13 }) ; // wait u n t i l a c to r te rminates
14 System . out . println ( ”EchoActor has terminated ” ) ;
15 } }
16
17 c l a s s EchoActor extends Actor<Object> {
18 s t a t i c f i n a l Object STOP_MSG = new Object ( ) ;
19 protec ted void process ( f i n a l Object msg ) {
20 i f ( STOP_MSG . equals ( msg ) ) {
21 exit ( ) ;
22 } e l s e {
23 System . out . println ( msg ) ;
24 }
25 }
26 }

Other examples that were discussed in Lecture 21 include Pipeline.java, and ThreadRingMain.java.

1.1 Tips and Pitfalls

• Use an actor-first approach when designing programs that use actors i.e., think about which actors
need to be created and how they will communicate with each other. This step will also require you to
think about the communication objects used as messages.

• If possible, use immutable objects for messages, since doing so avoids data races and simplifies debug-
ging of parallel programs.

2 of 4



COMP 322
Spring 2015

Lab 10: Actors

• When overriding the start() or exit() methods in actor classes, remember to make the appropriate
calls to the parent’s implementation with super.start() or super.exit(), respectively,

• The HJlib actor start() method is not idempotent. Take care to ensure you do not invoke start()

on the same actor instance more than once. The exit() method on the other hand is idempotent,
invoking exit() multiple times is safe within the same call to process().

• Always remember to terminate a started actor using the exit() method. If an actor that has been
started is not terminated, the enclosing finish will wait forever (deadlock).

2 Exercises for today

2.1 Pi Computation using Bailey-Borwein-Plouffe formula

Our first exercise involves computing π to a specified precision in HJlib. The following formula can be used
to compute π:

π =

∞∑
n=0

(
4

8n+ 1
− 2

8n+ 4
− 1

8n+ 5
− 1

8n+ 6

)(
1

16

)n

The PiSerial1.java file contains a simple sequential algorithm for computing π using Java’s BigDecimal

data type, that runs for a fixed number of iterations. The PiActor1.java file contains a parallel version of
PiSerial1.java using Master-Worker style actors, as explained in Lecture 23.

In contrast, the PiSerial2.java file contains a more realistic sequential algorithm that uses a while loop
to compute more and more terms of the series until a desired precision is reached.

We have already provided a version of PiActor2.java with TODO comments. For this section, your as-
signment is to convert the sequential program in PiSerial2.java (for computing π to a desired pre-
cision) to an actor-based parallel program in PiActor2.java by filling in code at the TODO segments.
Next, you will need to evaluate the performance of the serial and parallel versions, PiSerial2.java and
PiActor2.java, on a STIC compute node. Also, attempt to run with higher precision values while evaluat-
ing the performance. Our implementation achieved over 5.7× speedup over the sequential implementation
(edu.rice.comp322.SieveSerial) on STIC while using 8 worker threads.

2.2 Primes Sieves using a Pipeline

The SieveSerial.java file contains a sequential version of the Sieve of Eratosthenes algorithm for generating
prime numbers. You already studied a similar example in Lab 1. For this section, your assignment is to
convert the sequential program in SieveSerial.java (for computing the number of primes in a given range)
to an actor-based parallel program in Sieve.java (by filling in code at the TODO segments), and to evaluate
the performance of the serial and parallel versions on a STIC compute node. Also, attempt to run with
higher limit values while evaluating the performance. Our implementation achieved over 6.5× speedup over
the sequential implementation (edu.rice.comp322.PiSerial2) on STIC while using 8 worker threads.

The basic idea is to create multiple stages of the pipeline that forward a candidate prime number to the
next stage only if the stage determines the candidate is locally prime. When the candidate reaches the end
of the pipeline, the pipeline may need to be extended. Thus, this is also an example of a dynamic pipeline
where the number of stages is not necessarily known in advance. A simple diagrammatic explanation of how
the pipeline would work is shown in Figure 1. Note that to reduce the relative overhead, you will need to
increase the amount of work done in each stage by having it store and process multiple prime numbers as a
batch.

3 of 4

http://mathworld.wolfram.com/BBPFormula.html
http://en.wikipedia.org/wiki/Prime_number_sieve


COMP 322
Spring 2015

Lab 10: Actors

Figure 1: Illustration of Sieve of Eratosthenes algorithm (source: http://golang.org/doc/sieve.gif)

3 Turning in your lab work

For each lab, you will need to turn in your work before leaving, as follows.

1. Show your work to an instructor or TA to get credit for this lab. Be prepared to explain the lab at a
high level.

2. Check that all the work for today’s lab is in the lab 10 directory. If not, make a copy of any missing
files/folders there. It’s fine if you include more rather than fewer files — don’t worry about cleaning
up intermediate/temporary files.

3. Use the svn command script to submit the lab 10 directory to your turnin directory as explained in
the first handout. Note that you should not turn in a zip file.

4 of 4

http://golang.org/doc/sieve.gif
https://wiki.rice.edu/confluence/download/attachments/4435861/comp322-s14-lab1.pdf?version=4

	HJlib Actors
	Tips and Pitfalls

	Exercises for today
	Pi Computation using Bailey-Borwein-Plouffe formula
	Primes Sieves using a Pipeline

	Turning in your lab work

