
COMP 322 Spring 2015

Lab 13: First Steps with Apache Spark
Instructor: Vivek Sarkar, Eric Allen

Course wiki : https://wiki.rice.edu/confluence/display/PARPROG/COMP322

Staff Email : comp322-staff@mailman.rice.edu

Importants tips and links

edX site : https://edge.edx.org/courses/RiceX/COMP322/1T2014R

Piazza site : https://piazza.com/rice/spring2015/comp322/home

Java 8 Download : https://jdk8.java.net/download.html

Maven Download : http://maven.apache.org/download.cgi

IntelliJ IDEA : http://www.jetbrains.com/idea/download/

HJ-lib Jar File : http://www.cs.rice.edu/~vs3/hjlib/code/maven-repo/edu/rice/hjlib-cooperative/

0.1.5-SNAPSHOT/hjlib-cooperative-0.1.5-SNAPSHOT.jar

HJ-lib API Documentation : https://wiki.rice.edu/confluence/display/PARPROG/API+Documentation

HelloWorld Project : https://wiki.rice.edu/confluence/pages/viewpage.action?pageId=14433124

1 Acknowledgements

This lab presents the Spark implementation of word count described at http://spark.apache.org.

2 Overview

The purpose of this lab is to walk through an installation of Apache Spark, execute a simple word count
operation on your machine, and then modify word count so that only a selected set of words are counted.

Although Apache Spark is best applied to distributed computation, it can be be run in “local mode,” where
it will simply make use of the available cores on your computer. Using local mode, we can view Spark as
another viable model of multicore parallel computing.

For the purposes of this lab, we will run in local mode. However, the commands you will execute are identical
to what you would use to run a distributed computation on a cluster with Spark installed.

NOTE: There is no Maven repository for this lab!

3 Installing Spark

To install Spark on your computer, perform the following steps:

• First ensure you have a JVM installed on your machine by typing java -version at a command line

• Go to http://spark.apache.org and click on “Download”

1 of 5

https://wiki.rice.edu/confluence/display/PARPROG/COMP322
mailto:comp322-staff@mailman.rice.edu
https://edge.edx.org/courses/RiceX/COMP322/1T2014R
https://piazza.com/rice/spring2015/comp322/home
https://jdk8.java.net/download.html
http://maven.apache.org/download.cgi
http://www.jetbrains.com/idea/download/
http://www.cs.rice.edu/~vs3/hjlib/code/maven-repo/edu/rice/hjlib-cooperative/0.1.5-SNAPSHOT/hjlib-cooperative-0.1.5-SNAPSHOT.jar
http://www.cs.rice.edu/~vs3/hjlib/code/maven-repo/edu/rice/hjlib-cooperative/0.1.5-SNAPSHOT/hjlib-cooperative-0.1.5-SNAPSHOT.jar
https://wiki.rice.edu/confluence/display/PARPROG/API+Documentation
https://wiki.rice.edu/confluence/pages/viewpage.action?pageId=14433124


COMP 322
Spring 2015

Lab 13: First Steps with Apache Spark

• Select release 1.3.0

• Select “Prebuilt for Hadoop 2.4 and later”

• Select “Direct download”

• Click on the Download Spark link

4 Unpacking Spark

• In your home directory, create a subdirectory spark in which to store Spark

• Move the downloaded file into this directory

• Unpack the file. If you are on a Unix system (Linux, Mac OS) type the following at the command
line: tar xvf spark-1.3.0-bin-hadoop2.4.tgz. If you are on Windows, you can download 7zip
from http://www.7zip.org and use it to extract the contents.

5 Downloading a sample dataset

As part of today’s lab, we will be processing a large file containing approximately 4 million words.

• Download a compressed version of that file from http://jmg3.web.rice.edu/32big.zip using either
wget or by navigating to that URL in your browser.

• Extract the 32big.txt file from that ZIP using 7zip or the unzip utility. You should store 32big.txt under
the new directory you just created beneath your home directory, spark/spark-1.3.0-bin-hadoop2.4.

6 Running Spark

• cd into the new directory: cd spark/spark-1.3.0-bin-hadoop2.4

• You can now start an interactive session with Spark by calling the Spark Shell ./bin/spark-shell.

This will start a read-eval-print loop for Scala, similar to what you might have seen for many scripting
languages, such as Python. You can try it out by evaluating some simple Scala expressions:

scala> 1 + 2

res0: Int = 3

As you type expressions at the prompt, the resulting values are displayed, along with new variables that
they are bound to (in this case, res0), which you can use in subsequent expressions.

When invoking spark-shell, you can alter the number of cores and bytes of memory that Spark uses with
the keyword local. For example, to invoke spark-shell with one core and 2GB of memory, we write:

./bin/spark-shell --master local[1] --driver-memory 2G

2 of 5

http://www.7zip.org
http://jmg3.web.rice.edu/32big.zip


COMP 322
Spring 2015

Lab 13: First Steps with Apache Spark

7 Interacting with Spark

If you are still in a Spark session, close it using Ctrl-D and create a new one with 1 CPU core and 2GB of
memory:

./bin/spark-shell --master local[1] --driver-memory 2G

In your interactive session, you can interact with Spark via the global “spark context” variable sc. Try this
out by creating a simple RDD from the text in the large 32big.txt file you downloaded:

scala> val textFile = sc.textFile("32big.txt")

You now have a handle on an RDD. The elements in the RDD correspond to the lines in the 32big.txt file.
We can find out the number of lines using count:

scala> textFile.count()

As shown in class, we can also use the map/reduce pattern to count the number of occurences of each word
in the RDD:

scala> val wordCounts = textFile.flatMap(line => line.split(" ")).

map(word => (word, 1)).

reduceByKey((a, b) => a + b)

We can then view the result of running our word count via the collect operation:

scala> wordCounts.collect()

How long does this operation take when you only use one core? Note that Spark reports execution times for all
operations, there should be a line at the end of collect’s output that is labeled with ”INFO DAGSchedule”
and starts with ”Job 0 finished” which reports a time. Take note of this time, as we will compare it to an
execution with more than 1 core later.

If you run this collect operation repeatedly, i.e.:

scala> wordCounts.collect()

scala> wordCounts.collect()

scala> wordCounts.collect()

does the execution time change after the first execution? Can you explain this change?

You can also test the speedup with more cores. Kill your current Spark session by pressing Ctrl+D, and
launch a new one that uses 4 cores (assuming your laptop has 4 or more cores):

./bin/spark-shell --master local[4] --driver-memory 2G

Now, rerun the previous commands:

scala> val textFile = sc.textFile("32big.txt")

scala> val wordCounts = textFile.flatMap(line => line.split(" ")).

map(word => (word, 1)).

reduceByKey((a, b) => a + b)

scala> wordCounts.collect()

How does execution time change, compared to the time you noted for a single core?

3 of 5



COMP 322
Spring 2015

Lab 13: First Steps with Apache Spark

8 Selective Wordcount

Your next task is to alter our map/reduce operation on textFile so that only words of length 5 are counted,
and then display the counts of all (and only) words of length 5.

Hints:

• Scala syntax for if expressions is:

if testExpr thenExpr else elseExpr

An if expression can be used in any context that an expression can be used, and returns the value
returned by whichever branch of the if expression is executed.

• The length of a string s in Scala can be found by using the method s.length

• The elements of a pair can be retrieved using the accessors _0 and _1. For example:

scala> (1,2)._1

res2: Int = 1

• Collections in Scala (including RDDs) have a method filter that takes a boolean test and returns
a new RDD that contains only the elements for which the testing function passed. For example, the
following application of filter to a list of ints returns a new list containing only the even elements:

scala> List(1,2,3,4).filter(n => n % 2 == 0)

res1: List[Int] = List(2, 4)

9 Estimating π

Exit the Spark Shell using Ctrl+D and then restart it with just one core:

./bin/spark-shell --master local[1] --driver-memory 2G

We can now walk through a Spark program to estimate π in parallel from random trials. We will alter the
number of cores that Spark makes use of and observe the impact on performance.

At your read-eval-print loop, first define the number of random trials:

scala> val NUM_SAMPLES = 1000000000

Now we can estimate π with the following code snippet:

scala> val count = sc.parallelize(1 to NUM_SAMPLES).map{i =>

val x = Math.random()

val y = Math.random()

if (x*x + y*y < 1) 1 else 0

}.reduce(_ + _)

You can then print out an estimate of π as follows:

println("Pi is roughly " + 4.0 * count / NUM_SAMPLES)

Now exit the Spark shell and restart with 2 cores, and then 4 cores. Do you observe a speedup?

4 of 5



COMP 322
Spring 2015

Lab 13: First Steps with Apache Spark

10 Turning in your lab work

For each lab, you will need to turn in your work before leaving, as follows.

1. Show your work to an instructor or TA to get credit for this lab (as in COMP 215). Be prepared to
explain the lab at a high level.

2. Unlike with previous labs, you are not required to submit code to the repository.

5 of 5


	Acknowledgements
	Overview
	Installing Spark
	Unpacking Spark
	Downloading a sample dataset
	Running Spark
	Interacting with Spark
	Selective Wordcount
	Estimating 
	Turning in your lab work 

