
COMP 322: Fundamentals of
Parallel Programming

!
Lecture 14: Data-Driven Tasks and

Data-Driven Futures

Vivek Sarkar, Eric Allen
Department of Computer Science, Rice University

!
Contact email: vsarkar@rice.edu

!
https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 14 13 February 2015

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Dataflow Computing
• Original idea: replace machine instructions by a small set

of dataflow operators

Fork Primitive Ops

+

Switch Merge

T F
T F

T T

+ T F
T F

T T

⇒

2

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

x = a + b;
y = b * 7;
z = (x-y) * (x+y);

7
a b

x y

1 2

3 4

5An operator executes when all its input
values are present; copies of the result
value are distributed to the destination
operators. No separate control flow

Example instruction sequence and its
dataflow graph

3

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Macro-Dataflow Programming

• “Macro-dataflow” = extension of
dataflow model from instruction-level
to task-level operations
• General idea: build an arbitrary task
graph, but restrict all inter-task
communications to single-assignment
variables

• Static dataflow ==> graph fixed
when program execution starts
• Dynamic dataflow ==> graph can
grow dynamically

• Semantic guarantees: race-freedom,
determinism

• Deadlocks are possible due to
unavailable inputs (but they are
deterministic)

Communication via “single-
assignment” variables

44

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Extending HJ Futures for Macro-Dataflow:  
Data-Driven Futures (DDFs) and Data-Driven Tasks (DDTs)

HjDataDrivenFuture<T1> ddfA = newDataDrivenFuture();!

• Allocate an instance of a data-driven-future object (container)

• Object in container must be of type T1

• Used to implement “edges” in a computation graph

asyncAwait(ddfA, ddfB, …, () -> Stmt);!

• Create a new data-driven-task to start executing Stmt after all of ddfA, ddfB, … become
available (i.e., after task becomes “enabled”)

• Used to implement “nodes” in a computation graph

ddfA.put(V) ;!

• Store object V (of type T1) in ddfA, thereby making ddfA available

• Single-assignment rule: at most one put is permitted on a given DDF
ddfA.get()

• Return value (of type T1) stored in ddfA

• Throws an exception if put() has not been performed

— Should be performed by async’s that contain ddfA in their await
clause, or if there’s some other synchronization to guarantee that the
put() was performed

5

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Implementing Future Tasks using DDFs

• Future version
1. final HjFuture<T> f = future(() -> { return g(); }); !

2. S1 !

3. async(() -> {!

4. ... = f.get();!

5. S2;!

6. S3;!

7. });!

• DDF version
1. HjDataDrivenFuture<T> f = newDataDrivenFuture(); !

2. async(() -> { f.put(g()) });!

3. S1 !

4. asyncAwait(f, () -> { !

5. ... = f.get();!

6. S2;!

7. S3;!

8. });

6

!
!
!
!
!

• future.get()

• Returns the value wrapped in the future.

• future.resolved()

• Returns whether the future has been resolved, i.e. the value has
been computed.

• WARNING: use of resolved() can introduce nondeterminism

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

HjFutures and HjDataDrivenFuture

7

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Use of DDFs with dummy objects
(like future<Void>)

1. finish(() -> {!

2. HjDataDrivenFuture<Void> ddfA = newDataDrivenFuture();!

3. HjDataDrivenFuture<Void> ddfB = newDataDrivenFuture();!

4. HjDataDrivenFuture<Void> ddfC = newDataDrivenFuture();!

5. HjDataDrivenFuture<Void> ddfD = newDataDrivenFuture();!

6. HjDataDrivenFuture<Void> ddfE = newDataDrivenFuture();!

7. async(() -> { ... ; ddfA.put(null); }); // Task A!

8. asyncAwait(ddfA, () -> { ... ; ddfB.put(null); }); // Task B!

9. asyncAwait(ddfA, () -> { ... ; ddfC.put(null); }); // Task C!

10. asyncAwait(ddfB, ddfC, ()->{ ... ; ddfD.put(null); }); // Task D!

11. asyncAwait(ddfC, () -> { ... ; ddfE.put(null); }); // Task E!

12. asyncAwait(ddfD, ddfE, () -> { ... }); // Task F!

13. }); // finish

8

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Differences between Futures and DDFs/
DDTs

• Consumer task blocks on get() for each future that it reads, whereas
async-await does not start execution till all DDFs are available

• Future tasks cannot deadlock, but it is possible for a DDT to block
indefinitely (“deadlock”) if one of its input DDFs never becomes
available

• DDTs and DDFs are more general than futures
— Producer task can only write to a single future object, where as a

DDT can write to multiple DDF objects
— The choice of which future object to write to is tied to a future task

at creation time, where as the choice of output DDF can be
deferred to any point with a DDT

— Consumer tasks can be created before the producer tasks

• DDTs and DDFs can be more implemented more efficiently than
futures
— An “asyncAwait” statement does not block the worker, unlike a

future.get()

9

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Two Exception (error) cases for DDFs
that do not occur in futures

• Case 1: If two put’s are attempted on the same DDF, an
exception is thrown because of the violation of the single-
assignment rule
— There can be at most one value provided for a future

object (since it comes from the producer task’s return
statement)

!
• Case 2: If a get is attempted by a task on a DDF that was

not in the task’s await list, then an exception is thrown
because DDF’s do not support blocking gets
— Futures support blocking gets

10

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Deadlock example with DDTs
1. HjDataDrivenFuture left = newDataDrivenFuture();!
2. HjDataDrivenFuture right = newDataDrivenFuture();!
3. finish(() -> {!
4. asyncAwait(left, () -> { !
5. right.put(rightWriter()); });!
6. asyncAwait(right, () -> { !
7. left.put(leftWriter()); });!
8. });!
!

• HJ-Lib has deadlock detection mode!

• Enabled using:!
— System.setProperty(HjSystemProperty.trackDeadlocks.propertyKey(), “true");!

— Reports an edu.rice.hj.runtime.util.DeadlockException when deadlock detected

11

