COMP 322: Fundamentals of Parallel Programming

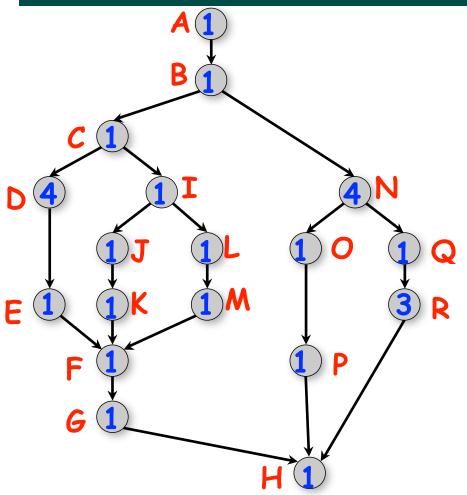
Lecture 4: Parallel Speedup and Amdahl's Law

Vivek Sarkar, Eric Allen
Department of Computer Science, Rice University

Contact email: <u>vsarkar@rice.edu</u>

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

One Possible Solution to Worksheet 3 (Multiprocessor Scheduling)



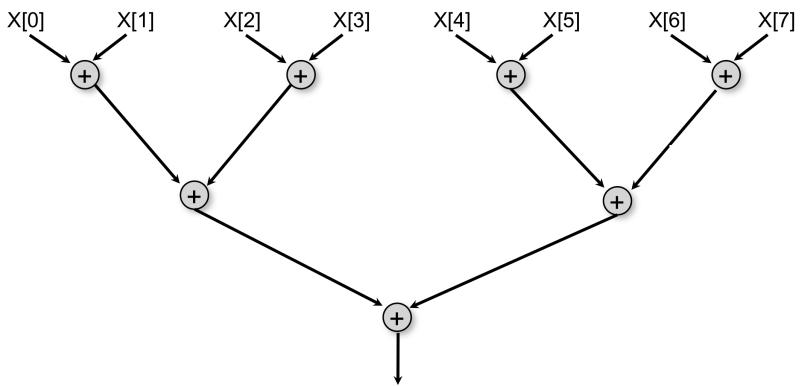
- As before, WORK = 26 and CPL = 11 for this graph
- $T_2 = 15$, for the 2-processor schedule on the right
- We can also see that max(CPL,WORK/2) <= T₂ < CPL + WORK/2

Start time	Proc 1	Proc 2
0	A	
1	В	
2	С	N
3	D	N
4	D	N
5	D	N
6	D	0
7	I	Q
8	J	R
9	L	R
10	K	R
11	M	E
12	F	P
13	G	
14	Н	
15		

Parallel Speedup

- Define Speedup(P) = T₁ / T_P
 - —Factor by which the use of P processors speeds up execution time relative to 1 processor, for a fixed input size
 - —For ideal executions without overhead, 1 <= Speedup(P) <= P</p>
 - —Linear speedup
 - When Speedup(P) = k*P, for some constant k, 0 < k < 1
- Ideal Parallelism = Parallel Speedup on an unbounded number of processors

Reduction Tree Schema for computing Array Sum in parallel



Assume input array size = 5, and each add takes 1 unit of time:

- WORK(G) = 5-1
- CPL(G) = log2(S)
- Estimate $T_p = WORK(G)/P + CPL(G) = (S-1)/P + log2(S)$
 - Within a factor of 2 of any schedule's execution time

How many processors should we use?

- Define Efficiency(P) = Speedup(P)/ P = T₁/(P * T_P)
 - Processor efficiency --- figure of merit that indicates how well a parallel program uses available processors
 - For ideal executions without overhead, 1/P <= Efficiency(P) <= 1</p>
- Half-performance metric
 - $S_{1/2}$ = input size that achieves Efficiency(P) = 0.5 for a given P
 - Figure of merit that indicates how large an input size is needed to obtain efficient parallelism
 - A larger value of S_{1/2} indicates that the problem is harder to parallelize efficiently
- How many processors to use?
 - Common goal: choose number of processors, P for a given input size,
 S, so that efficiency is at least 0.5

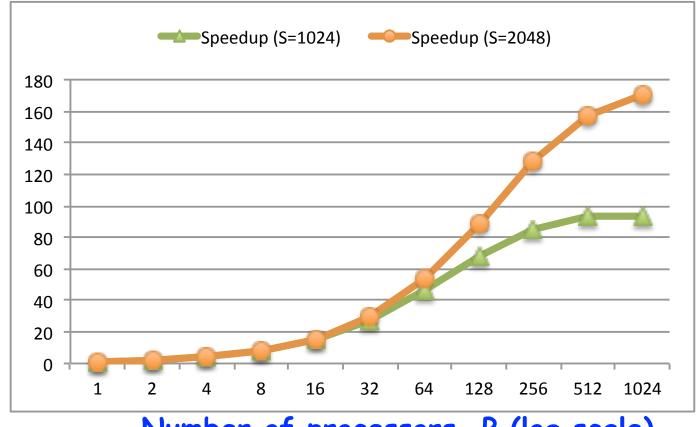
ArraySum: Speedup as function of array size, S, and number of processors, P

• Speedup(S,P) = $T(S,1)/T(S,P) = S/(S/P + log_2(S))$

Asymptotically, Speedup(S,P) --> S/log₂S, as P -->

infinity

Speedup(S,P)



Number of processors, P (log scale)

Amdahl's Law [1967]

- If $q \le 1$ is the fraction of WORK in a parallel program that <u>must be executed sequentially</u> for a given input size S, then the best speedup that can be obtained for that program is Speedup(S,P) $\le 1/q$.
- Observation follows directly from critical path length lower bound on parallel execution time

```
    CPL >= q * T(S,1)
    T(S,P) >= q * T(S,1)
    Speedup(S,P) = T(S,1)/T(S,P) <= 1/q</li>
```

- This upper bound on speedup simplistically assumes that work in program can be divided into sequential and parallel portions
 - Sequential portion of WORK = q
 - also denoted as f_s (fraction of sequential work)
 - Parallel portion of WORK = 1-q
 - also denoted as f_p (fraction of parallel work)
- Computation graph is more general and takes dependences into account

Illustration of Amdahl's Law: Best Case Speedup as function of Parallel Portion

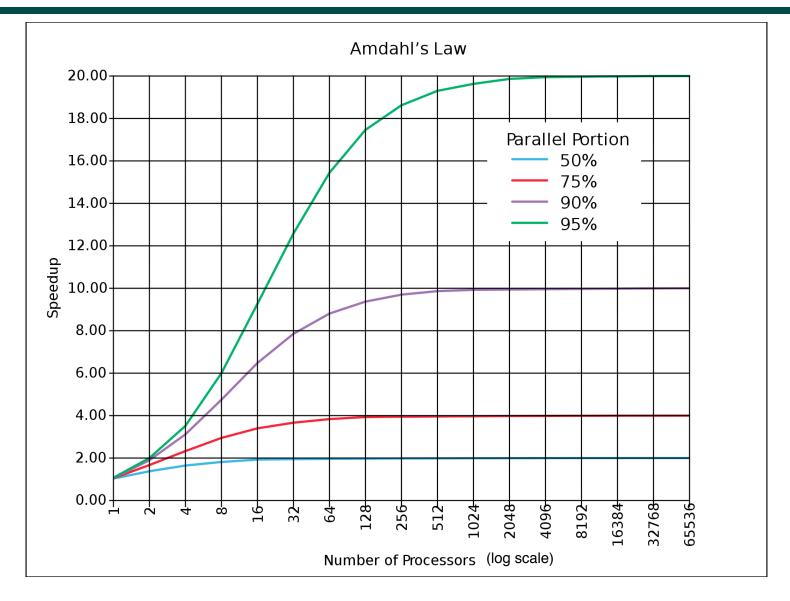


Figure source: http://en.wikipedia.org/wiki/Amdahl's law

