
COMP 322 Spring 2016

Homework 2: due by 12noon on Friday, February 12, 2016

(Total: 100 points)
Instructor: Vivek Sarkar, Co-Instructor: Shams Imam.

All homeworks should be submitted in a directory named “hw 2” in your svn repository for
this course. In case of problems committing your files, please contact the teaching staff at
comp322-staff@rice.edu before the deadline to get help resolving for your issues. No late
submissions will be accepted unless you are using your slip days.

The slip day policy for COMP 322 is similar to that of COMP 321. All students will be given
3 slip days to use throughout the semester. When you use a slip day, you will receive up to
24 additional hours to complete the assignment. You may use these slip days in any way you
see fit (3 days on one assignment, 1 day each on 3 assignments, etc.). If you use slip days, you
must submit a README.txt file in your svn homework folder before the actual submission
deadline indicating the number of slip days that you plan to use.

Other than slip days, no extensions will be given unless there are exceptional circumstances
(such as severe sickness, not because you have too much other work). Such extensions must
be requested and approved by the instructor (via e-mail, phone, or in person) before the due
date for the assignment. Last minute requests are likely to be denied.

If you see an ambiguity or inconsistency in a question, please seek a clarification on Piazza
or from the teaching staff. If it is not resolved through those channels, you should state the
ambiguity/inconsistency that you see, as well as any assumptions that you make to resolve it.

Honor Code Policy: All submitted homeworks are expected to be the result of your individual effort. You
are free to discuss course material and approaches to problems with your other classmates, the teaching
assistants and the professor, but you should never misrepresent someone else’s work as your own. If you use
any material from external sources, you must provide proper attribution.

1 Written Assignments (50 points total)

Submit your solutions to the written assignments as a PDF file named hw 2 written.pdf in the hw 2 di-
rectory. Please note that you be penalized 10 points if you misplace the file in some other folder or if you
submit the report in some other format.

1.1 Parallel Fibonacci using Futures (25 points)

Consider the HJlib code shown below in Listing 1 to compute the Fibonacci function in parallel using futures.
(Note that this is based on a highly inefficient sequential algorithm because it does not use memoization or
dynamic programming, but we will use this version for simplicity.)

1. Perform a big-O analysis for the total work performed by a call to fib(n). What expression do you get
for WORK(n) as a function of n? (15 points)

Hint: The closed form for Fibonacci number Fibi = (φi − φ̂i)/
√

5, where φ = 1+
√
5

2 and φ̂ = 1−
√
5

2
(i.e., the two roots of the equation x2 = x+ 1).

2. Perform a big-O analysis for the critical path length for a call to fib(n). What expression do you get
for CPL(n) as a function of n? (10 points)

1 of 5

comp322-staff@rice.edu

COMP 322
Spring 2016

Homework 2: due by 12noon on Friday, February 12, 2016

(Total: 100 points)

1 public stat ic int f i b (int n) throws SuspendableException {
2 i f (n <= 0) return 0 ;
3 else i f (n == 1) return 1 ;
4
5 HjFuture<Integer> f 1 = fu tu r e (() −> f i b (n − 1)) ;
6 HjFuture<Integer> f 2 = fu tu r e (() −> f i b (n − 2)) ;
7
8 In t eg e r f1Val = f1 . get () ;
9 In t eg e r f2Val = f2 . get () ;

10 doWork (1) ; // only count add i t i on in ab s t r a c t metr i c s
11 return f1Val + f2Val ;
12 }

Listing 1: Parallel Fibonacci using Futures

1.2 Finish Accumulators (25 points)

Consider the pseudocode shown below in Listing 2 for a Parallel Search algorithm that is intended to com-
pute C, the number of occurrences of the pattern array in the text array. What possible values can variables
count0, count1, and count2 contain at line 16, and why? Write your answers in terms of M , N , and C.

1 // Assume that count0 , count1 , count2 are dec l a r ed
2 // as ob j e c t / s t a t i c f i e l d s o f type i n t
3 . . .
4 count0 = 0 ;
5 accumulator a = new accumulator (SUM, int . class) ;
6 f in ish (a) {
7 for (int i = 0 ; i <= N − M; i++)
8 async {
9 int j ;

10 for (j = 0 ; j < M; j++) i f (t ex t [i+j] != pattern [j]) break ;
11 i f (j == M) { count0++; a .put (1) ; } // found at o f f s e t i
12 count1 = a . get () . intValue () ;
13 } // for−async
14 } // f i n i s h
15 count2 = a . get () . intValue () ;
16 // Pr int count0 , count1 , count2

Listing 2: Parallel Search using Finish Accumulators

2 Programming Assignment (50 points)

2.1 Setup

For this homework, you can choose to set up your environment manually (as in Lab 3) or use IntelliJ-Maven
configuration to do so automatically. Note that the teaching staff have resolved the Maven repository issues
by migrating to a new repository host, so we expect the IntelliJ-Maven configuration to be the simpler
option.

For either option, you should start by checking out the project template for HW2 from your SVN turnin
folder, located at https://svn.rice.edu/r/comp322/turnin/S16/your-netid/hw 2. You can either do this
from the command line:

2 of 5

COMP 322
Spring 2016

Homework 2: due by 12noon on Friday, February 12, 2016

(Total: 100 points)

svn checkout https://svn.rice.edu/r/comp322/turnin/S16/NETID/hw_2

or use IntelliJ’s VCS support by going to File > New > Project from Version Control > Subversion, clicking
the + button at the top of the pop up, entering the same https URL, clicking Checkout, and selecting a
location on your local machine to place your copy of HW2. Note that if you checkout from the command
line, you will then need to import the checked out folder as a new project in IntelliJ.

If you choose to configure your environment automatically, then from the IntelliJ project you just created
from Subversion find the included pom.xml file in the file navigator (likely on the left hand side of your
screen). This pom.xml will be in the top-level directory of the checked out project. Right-click pom.xml,
and select “Add as Maven Project”. This option is towards the bottom of the options list. Once you have
done that, again right-click on the same pom.xml file and you should now see a “Maven” option towards the
bottom of the list. Click on Maven > Reimport to be sure IntelliJ has pulled in the JARs for this homework.
Finally, go to File > Project Structure and in the pop up select “Modules” from the left menu. You should
see three JARs listed in the central pane: hjlib-cooperative:0.1.8, asm-all:5.0.3, and junit:3.8.2. Check the
checkboxes next to each, hit “Apply” at the bottom right of the window, and close the window by clicking
“OK”.

If you choose to configure your system manually, follow the instructions in the Lab 3 handout starting with
the second bullet point in Section 1.1 and using the project you just created from Subversion. Note that for
this homework you will need a newer version of HJlib (v1.8) than was used for Lab 3. We have provided
a single ZIP on the COMP 322 website containing all three of the necessary JARs to run this homework
if you choose to manually install them. Also note that you should not modify any folder structure for this
homework.

Finally, regardless of whether you created the project manually or automatically, navigate to File > Project
Structure and verify that in the “Project” pane you have “1.8” selected as the “Project SDK”. You will
also need to add the -javaagent JVM option to any Run Configurations you create in this lab, as has been
described in the other labs and homeworks. If you are unsure what the full path to your HJlib JAR is, you
should be able to expand “External Libraries” in the file navigator, right click on the hjlib-cooperative JAR
listed under there, select “Open Library Settings”, and copy the full path from that pop up window.

Once the project is properly configured, you should be able to go to Build > Rebuild Project and successfully
compile the Java classes you have been provided with. You can verify this by running the JUnit tests inside
edu.rice.comp322.MatrixMultiplyCorrectnessTest. Two of the six tests should fail and will by fixed by
you: testOptimizedParallelMultiplySimple and testOptimizedParallelMultiplyRectangular.

2.2 Abstract Overhead

Thus far, our abstract metrics have assumed an idealized execution in which there is no overhead in creating
async or future tasks. In an effort to make the model a bit more realistic, we will add an abstract overhead
for the programming assignment in Homework 2. The idea behind abstract overhead is to charge a certain
cost, C, to a parent task whenever it creates a child task. This cost will be added as sequential work to the
parent just before the child task is created. For example, if a task creates N async child tasks, it will incur
an overhead of N × C units of work which will be added to other work that the task is doing.

In Lab 3, we learned that abstract metrics can be enabled by invoking

HjSystemProperty.abstractMetrics.setProperty(true);

before calling launchHabaneroApp(). For this homework, we introduce another call,

HjSystemProperty.asyncSpawnCostMetrics.setProperty(C);

that sets the abstract async overhead to C, and should also be called before launchHabaneroApp(). The
abstract async overhead is a cost measured in work that a task pays each time an async is created. Asyncs

3 of 5

COMP 322
Spring 2016

Homework 2: due by 12noon on Friday, February 12, 2016

(Total: 100 points)

are not actually free: they consume processor cycles and system memory. In this homework, we will simulate
that cost using abstract metrics and try to implement a parallel algorithm in such a way as to limit the
effect of that cost on the CPL.

2.3 Parallel Matrix Multiply with Abstract Overhead (50 points)

The goal of this assignment is to implement a parallel matrix multiply program with the smallest critical
path length, when taking abstract async overhead into account. If you need to brush up on matrix-matrix
multiplies, see the sample code in Worksheet 1 Question 2 or https://www.mathsisfun.com/algebra/

matrix-multiplying.html. Your solution should work for matrices of all sizes (within the limits of the
memory capacity of your machine), but you will be graded by multiplying two N ×N matrices for N = 1024
with an abstract async overhead cost of C = N = 1024. The abstract metrics should count one unit
of work for each multiply operation, and assume that all other operations (other than the abstract async
overhead) are free. When C = N , we expect the best solution to have a critical path length of approximately
N × (log2(N) + 1).

You will need to add calls to

HjSystemProperty.abstractMetrics.setProperty(true);

HjSystemProperty.asyncSpawnCostMetrics.setProperty(C);

where appropriate (i.e. before launchHabaneroApp) in any tests you write to verify your implementation.
Also, make sure to add calls to doWork(1) for each multiply operation performed as part of your matrix-
matrix multiply implementation. If you do not, your results will be misleading.

We have provided a basic template of a Matrix class which can be multiplied by another matrix class.
Matrix includes sample sequential and parallel implementations of matrix-matrix multiply. Note that the
CPL of the parallel implementation is much higher than the best solution of N × (log2(N) + 1).

You should complete the optimizedParallelMultiply method, with the goal of minimizing the CPL of
your matrix-matrix multiply solution for N = C = 1024. You are free to add any tests or other code you
like under the main/ and test/ directories, but please do not modify the folder structure of the project.

A correct parallel program should generate the same output as the sequential version, and should not
exhibit any data races. The parallelism in your solution should be expressed using only async, finish,
and/or future constructs. It should pass the unit tests provided, and other tests that the teaching staff will
use while grading.

2.4 AutoGrader

This homework will be supported on the AutoGrader. As with Lab 1, simply navigate to ananke.cs.rice.

edu, and upload a ZIP file of your solution for the COMP322-S16-HW2 assignment. Your ZIP file should
be created from the top-level hw 2/ directory. This directory includes your pom.xml and src/ directory. For
example, you can create it from the command line using:

zip -r hw_2.zip hw_2/

or by right-clicking on the hw 2 directory in your file browser and selecting “Send to > Compressed (zipped)
folder” (Windows) or “Compress hw 2” (Mac OS).

You are not required to use the AutoGrader, it is simply meant to be a useful tool. It will run several static
checks (including checkstyle and FindBugs) to help identify problems in your code. The teaching staff may
also upload additional tests to the AutoGrader during the assignment to help verify the correctness of your
implementation (if new tests are uploaded, a notification will be sent out on Piazza).

2.5 Submitting

Your submission should include the following in the hw 2 directory and should be turned in via the hw 2
turnin folder you checked out as an IntelliJ project at the start of this section:

4 of 5

https://www.mathsisfun.com/algebra/matrix-multiplying.html
https://www.mathsisfun.com/algebra/matrix-multiplying.html
ananke.cs.rice.edu
ananke.cs.rice.edu

COMP 322
Spring 2016

Homework 2: due by 12noon on Friday, February 12, 2016

(Total: 100 points)

1. (25 points) Your completed solution to the parallel matrix multiply problem, that attempts to minimize
CPL in the presence of an abstract overhead implemented in the Matrix.optimizedParallelMultiply
method. We will only evaluate the performance of your solution using abstract metrics, and not its
actual execution time.

15 points will be allocated based on the ideal parallelism that you achieve and the correctness of your
implementation. You will get the full 15 points if you achieve a CPL of N × (log2(N) + 1) or better,
when the abstract overhead is C = N .

10 points will be allocated for coding style and documentation. At a minimum, all code should include
basic documentation for each method in each class. You are also welcome to add additional unit tests
to test corner cases and ensure the correctness of your implementations.

2. (15 points) A report file formatted as a PDF file named hw 2 report.pdf in the hw 2 directory. The
report should contain the following:

(a) A summary of your parallel algorithm, and the steps that you had to take to minimize CPL in
the presence of abstract overehad.

(b) An explanation as to why you believe that your implementation is correct and data-race-free.

(c) An explanation of what value of CPL (as a function of N) you expect to see from your implemen-
tation, and why.

3. (10 points) The report file should also include test output for the CPL value obtained for matrix
multiply with N = C = 1024 as inputs. Also, include the IDEAL PARALLELISM (= N3/CPL) value
obtained from your CPL value. Note that N3 is included in the numerator, since that is the total work
excluding abstract overhead.

5 of 5

	Written Assignments (50 points total)
	Parallel Fibonacci using Futures (25 points)
	Finish Accumulators (25 points)

	Programming Assignment (50 points)
	Setup
	Abstract Overhead
	Parallel Matrix Multiply with Abstract Overhead (50 points)
	AutoGrader
	Submitting

