
COMP 322 Spring 2016

Homework 4: due by 12noon on Monday, April 11, 2016
Instructor: Vivek Sarkar, Co-Instructor: Shams Imam.

Checkpoint 1 due by 12noon on Monday, April 4, 2016
Total score: 100 points

All homeworks should be submitted in a directory named “hw 4” in your svn repository for
this course. In case of problems committing your files, please contact the teaching staff at
comp322-staff@rice.edu before the deadline to get help resolving for your issues. No late
submissions will be accepted unless you are using your slip days.

The slip day policy for COMP 322 is similar to that of COMP 321. All students will be given
3 slip days to use throughout the semester. When you use a slip day, you will receive up to
24 additional hours to complete the assignment. You may use these slip days in any way you
see fit (3 days on one assignment, 1 day each on 3 assignments, etc.). If you use slip days, you
must submit a SLIPDAY.txt file in your svn homework folder before the actual submission
deadline indicating the number of slip days that you plan to use.

Please note the deadline for Checkpoint 1. Only the code (not the written report) for that
checkpoint needs to be submitted by the checkpoint deadline. Slip days can be used for
individual checkpoints if needed, following the slip day policy outlined above. The written
report and and the final project are due by the final deadline for this homework.

Other than slip days, no extensions will be given unless there are exceptional circumstances
(such as severe sickness, not because you have too much other work). Such extensions must
be requested and approved by the instructor (via e-mail, phone, or in person) before the due
date for the assignment. Last minute requests are likely to be denied.

If you see an ambiguity or inconsistency in any homework question, please seek a clarification
on Piazza or from the teaching staff. If it is not resolved through those channels, you should
state the ambiguity/inconsistency that you see, as well as any assumptions that you make to
resolve it.

Honor Code Policy: All submitted homeworks are expected to be the result of your individual effort. You
are free to discuss course material and approaches to problems with your other classmates, the teaching
assistants and the professor, but you should never misrepresent someone else’s work as your own. If you use
any material from external sources, you must provide proper attribution.

1 of 8

comp322-staff@rice.edu

COMP 322
Spring 2016

Homework 4: due by 12noon on Monday, April 11, 2016

1 Written Assignments (40 points total)

Submit your solutions to the written assignments as a PDF file named hw 4 written.pdf in the hw 4 di-
rectory. Please note that you be penalized 10 points if you misplace the file in some other folder or if you
submit the report in some other format.

1.1 HJ isolated constructs vs. Java atomic variables (20 points)

Many applications use Pseudo-Random Number Generators (PRNGs) as in class IsolatedPRNG in Listing 1.
The idea is that the seed field takes a linear sequence of values obtained by successive calls to the nextInt()
method as shown in line 6. The use of the HJ isolated construct in lines 4–9 ensures that there will be
no data race on the seed field if nextSeed() is called in parallel by multiple tasks. The serialization of the
isolated construct instances will determine which task obtains which seed in the sequence.

1 class IsolatedPRNG {
2 private int seed ;
3 public int nextSeed () {
4 f ina l int re tVal = iso latedWithReturn (() −> {
5 f ina l int curSeed = seed ;
6 f ina l int newSeed = nextInt (curSeed) ;
7 seed = newSeed ;
8 return curSeed ;
9 }) ;

10 return re tVal ;
11 } // nextSeed ()
12 . . . // De f i n i t i o n o f next Int () , cons t ruc to r s , e t c .
13 } // IsolatedPRNG

Listing 1: Concurrent PRNG implemented using isolated construct

Since the isolated construct is not available in standard Java, class AtomicPRNG in Listing 2 attempts to
implement the same functionality by using Java atomic variables instead.

1. (10 points) Assuming a scenario where nextSeed() is called by multiple tasks in parallel on the same
PRNG object, state if the implementation of AtomicPRNG.nextSeed() has the same semantics as that
of IsolatedPRNG.nextSeed(). If so, why? If not, why not?

By “same semantics”, we mean that for every IsolatedPRNG execution, we can find an equivalent
AtomicPRNG execution that results in the same answer, and for every AtomicPRNG execution, we
can find an equivalent IsolatedPRNG execution that results in the same answer.

2. (10 points) Why is the “while (true)” loop needed in line 5 of AtomicPRNG.nextSeed()? What would
happen if the while(true) loop was replaced by a loop that executes for only iteration?

1.2 Written Assignment: Dining Philosophers Problem (20 points)

In Lecture 29, we will study the characteristics of different solutions to the Dining Philosophers problem.
Both Solution 1 (using Java’s synchronized statement) and Solution 2 (using Java’s lock library) had the
following structure in which each philosopher attempts to first acquire the left fork, and then the right fork:

final int numPhilosophers = 5;

final int numForks = numPhilosophers;

final Fork[] fork = ... ; // Initialize array of forks

forall(0, numPhilosophers-1, (p) -> {

2 of 8

COMP 322
Spring 2016

Homework 4: due by 12noon on Monday, April 11, 2016

1 class AtomicPRNG {
2 private AtomicInteger seed ;
3 public int nextSeed () {
4 int re tVal ;
5 while (true) {
6 retVal = seed . get () ;
7 int nextSeedVal = nextInt (retVal) ;
8 i f (seed . compareAndSet (retVal , nextSeedVal)) break ;
9 } // whi l e

10 return re tVal
11 } // nextSeed ()
12 . . . // De f i n i t i o n o f next Int () , cons t ruc to r s , e t c .
13 } // AtomicPRNG

Listing 2: Concurrent PRNG implemented using Java’s AtomicInteger class

while(true) {

Think ;

Acquire left fork, fork[p] ;

Acquire right fork, fork[(p-1)%numForks] ;

Eat ;

} // while

}); // forall

Consider a variant of this approach in which any 4 philosophers follow the above structure, but the 1
remaining philosopher first attempts to acquire the right fork and then the left fork.

1. (10 points) Is a deadlock possible in Solution 1 (using Java’s synchronized statement) for this variant
with 4 philosophers attempting to first acquire the left fork, and then the right fork, and the fifth
philosopher doing the opposite? If so, show an execution that leads to deadlock. If not, explain why
not.

2. (10 points) Is a livelock possible in Solution 2 (using Java’s lock library) for this variant with 4
philosophers attempting to first acquire the left fork, and then the right fork, and the fifth philosopher
doing the opposite? If so, show an execution that exhibits a livelock. If not, explain why not. For the
purpose of this program, a livelock is a scenario in which all philosophers starve without any of them
being blocked.

2 Programming Assignment: Minimum Spanning Tree of an Undi-
rected Graph (60 points)

In this homework, we will focus on the problem of finding a minimum spanning tree of an undirected graph.
Some of you may recall minimum spanning trees from COMP 182. Note that we have studied parallel
spanning tree algorithms earlier in COMP 322, but the focus of this assignment is on parallel algorithms for
finding the spanning tree with minimum cost.

The following definition is from Wikipedia (http://en.wikipedia.org/wiki/Minimum_spanning_tree):

Given a connected, undirected graph, a spanning tree of that graph is a subgraph that is a tree
and connects all the vertices together. A single graph can have many different spanning trees.

3 of 8

http://en.wikipedia.org/wiki/Minimum_spanning_tree

COMP 322
Spring 2016

Homework 4: due by 12noon on Monday, April 11, 2016

Figure 1: Two possible Minimum Spanning Trees (MSTs) for a given undirected graph (source: http:

//en.wikipedia.org/wiki/Minimum_spanning_tree)

We can also assign a weight to each edge, which is a number representing how unfavorable it is,
and use this to assign a weight to a spanning tree by computing the sum of the weights of the
edges in that spanning tree. A Minimum Spanning Tree (MST) or minimum weight spanning
tree is then a spanning tree with weight less than or equal to the weight of every other spanning
tree. More generally, any undirected graph (not necessarily connected) has a minimum spanning
forest, which is a union of minimum spanning trees for its connected components.

Figure 1 shows there may be more than one minimum spanning tree in a graph. In the figure, two minimum
spanning trees are shown for the given graph (each with total cost = 16).

2.1 Boruvka’s algorithm to compute the Minimum Spanning Tree of an Undirected Graph

The first known algorithm for finding the MST of an undirected graph was developed by Czech scientist
Otakar Boruvka in 1926. Two other commonly used algorithms for computing the MST are Prim’s algorithm
and Kruskal’s algorithm. In this assignment, we will focus on parallelizing Boruvka’s algorithm, by providing
a reference sequential implementation of that algorithm in Java. If you prefer to parallelize an alternate MST
algorithm, please send email to comp322-staff@rice.edu as soon as possible. You will then be responsible for
obtaining or creating a sequential Java implementation of that algorithm as a starting point.

The following summary of Boruvka’s sequential algorithm is from the Galois project’s description of Boruvka’s
algorithm:

Boruvka’s algorithm computes the minimal spanning tree through successive applications of edge-
contraction on an input graph (without self-loops). In edge-contraction, an edge is chosen from
the graph and a new node is formed with the union of the connectivity of the incident nodes of
the chosen edge. In the case that there are duplicate edges, only the one with least weight is
carried through in the union. Figure 2 demonstrates this process. Boruvka’s algorithm proceeds
in an unordered fashion. Each node performs edge contraction with its lightest neighbor.

In the example in Figure 2, the edge connecting nodes M and N is contracted, resulting in the replacement
of nodes M and N by a single node, L.

4 of 8

http://en.wikipedia.org/wiki/Minimum_spanning_tree
http://en.wikipedia.org/wiki/Minimum_spanning_tree
http://iss.ices.utexas.edu/?p=projects/galois/benchmarks/boruvkas_algorithm
http://iss.ices.utexas.edu/?p=projects/galois/benchmarks/boruvkas_algorithm

COMP 322
Spring 2016

Homework 4: due by 12noon on Monday, April 11, 2016

(a) Before edge contraction (b) After edge contraction

Figure 2: Demonstration of edge contraction

The Maven project for this lab is located in the following svn repository:

• https://svn.rice.edu/r/comp322/turnin/S16/NETID /hw 4

Please use the subversion command-line client to checkout the project into appropriate directories locally.

2.2 Reference Sequential Implementation of Boruvka’s algorithm

The files SeqBoruvka.java, SeqComponent.java, SeqEdge.java contain a reference sequential implemen-
tation of Boruvka’s algorithm in Java.

1 // START OF EDGE CONTRACTION ALGORITHM
2 Component n = null ;
3 while (! nodesLoaded . isEmpty ()) {
4 // p o l l () removes f i r s t element from the nodesLoaded work− l i s t
5 n = nodesLoaded . p o l l () ;
6 i f (n . isDead)
7 continue ; // node n has a l r eady been merged
8 Edge e = n . getMinEdge () ; // r e t r i e v e n ’ s edge with minimum cos t
9 i f (e == null)

10 break ; // done − we ’ ve contracted the graph to a s i n g l e node
11 Component other = e . getOther (n) ;
12 // mark t h i s component dead , i . e . we have v i s i t e d t h i s component
13 other . isDead = true ;
14 n . merge (other , e . weight) ; // Merge node other in to node n
15 nodesLoaded . add (n) ; // Add newly merged n back in the work− l i s t
16 }
17 // END OF EDGE CONTRACTION ALGORITHM

Listing 3: Sequential version of Boruvka’s MST algorithm

Listing 3 shows the main code for Boruvka’s algorithm from SeqBoruvka.java. The field, nodesLoaded,
is a reference to a work-list that (in the sequential version) is implemented as a LinkedList of Component
objects, where each component refers to a collection of one or more more nodes that have been contracted.
Initially, each node is in a component by itself. This implementation assumes that the graph contains no
self-loops (i.e., no edge from a node to itself) and that the graph is connected.

Each iteration of the while loop in line 5 removes a component, n, from the work-list1. Line 6 skips the
component if it was marked as dead i.e., if it was merged with another component. Line 8 retrieves edge e

with minimum cost connected to component n. If n has no adjacent edges, then we must have collapsed all
the nodes into a single component and we can exit the loop using the break statement in line 10. Line 11 sets
other to the component connected to n at the other end of e. Lines 13 and 14 do the necessary book-keeping
to merge other into n. Finally, line 15 adds the newly contracted component, n, back into the work-list.

1Line numbers here refer to Listing 3, and not the code in SeqBoruvka.java.

5 of 8

COMP 322
Spring 2016

Homework 4: due by 12noon on Monday, April 11, 2016

2.3 Roadway Data

There are several .gz files under src/main/resources/boruvka for evaluating the correctness and per-
formance of your parallel Boruvka implementation. These files contain distance graphs that represent the
roadways of various regions in the United States (http://www.dis.uniroma1.it/challenge9/download.
shtml). Each edge in these graphs represents the distance between two locations on a road. For example,
Boruvka USA-road-d.NY.gr.gz contains the distance graph for New York City.

2.4 Your Assignment: Parallel Minimum Spanning Tree Algorithm using Java Threads

Your assignment is to design and implement a parallel algorithm for finding the minimum spanning tree
of an undirected graph using whatever parallel Java primitives you have learned in this class — stan-
dard Java threads, java.util.concurrent libraries, HJ library, or some (carefully selected) combination
thereof. You can use the sequential implementation of Boruvka’s algorithm described in Section 2.2 as
a starting point (in the provided ParBoruvka.java file), and you are free to modify any files in the
edu.rice.comp322.boruvka.parallel package that you choose.

There are two main items to note in the provided code:

1. The runIteration method in ParBoruvka accepts a number of threads argument. This argument will
reflect the number of hardware cores allocated to your experiment when testing your solution after
submission and through the autograder. You are free to ignore this parameter, but it can help you to
tune your solution by not creating too many threads for the given number of cores.

2. The ParBoruvka class includes a usesHjLib method that defaults to true. This method indicates to
the tests whether your implementation requires that the HJlib runtime be created before starting your
experiments. This method defaults to true, indicating that you are using HJlib. If you are not using
HJlib, this should be changed to false to ensure the HJlib runtime is not initialized to prevent HJlib
threads from conflicting with any Java threads manually created by you.

Your homework will be evaluated as follows. A single implementation should be submitted for both parts 1
and 2:

1. [Checkpoint 1 due on April 4, 2016: correct parallel algorithm (20 points)]

The following two observations about the algorithm in Listing 3 can provide insights on how to paral-
lelize the algorithm:

• The order in which components are removed (line 5) from and inserted (line 15) in the work-list
is not significant i.e., the work-list can be implemented as any unordered collection.

• If two iterations of the while loop work on disjoint (n, other) pairs, then the iterations can be
executed in parallel using a thread-safe implementation of the work-list that allows inserts and
removes to be invoked in parallel.

You will get full credit for this checkpoint with any correct implementation that passes all the unit tests
while exploiting parallelism among while-loop iterations as indicated above, even if the implementation
incurs large overheads and runs slower than the sequential version. Your program should return a
correct MST solution for the given test input, when executed with at least 2 threads. Include the
output from one run of the provided correctness tests in BoruvkaCorrectnessTest.java in your
report.

2. [Performance evaluation on NOTS compute nodes (25 points)] The goal of this part of the
homework is to evaluate the performance of your parallel implementation and compare it to that of the
sequential version. Measure the performance of your program when using 1, 2, 4, 8, and 16 threads, and
compare it with the performance of the provided sequential version. There are six input files provided
(USA-road-d.NY.gr.gz, USA-road-d.BAY.gr.gz, USA-road-d.COL.gr.gz, USA-road-d.FLA.gr.gz,

6 of 8

http://www.dis.uniroma1.it/challenge9/download.shtml
http://www.dis.uniroma1.it/challenge9/download.shtml

COMP 322
Spring 2016

Homework 4: due by 12noon on Monday, April 11, 2016

USA-road-d.NW.gr.gz, and USA-road-d.NE.gr.gz), each with progressively larger graphs (i.e. larger
numbers of input edges). The provided testing file BoruvkaPerformanceTest.java contains tests that
process each of these inputs. You may choose any one of these inputs to present your performance
results. Clearly mention the input files you have chosen for your performance results in you report
along with the output of the corresponding test in BoruvkaPerformanceTest.

You will be graded on the performance obtained by your parallel implementation with 2, 4, 8, and
16 threads, relative to the performance of the same parallel implementation using 1 thread (note that
this is scalability, not speedup). Getting good speedups when parallelizing Boruvka’s algorithm can
be challenging. However, you should see some performance improvements when going from 1 to 2 or
4 threads. Do not be surprised if you see performance degradations with 8 or 16 threads.

The 25 points for performance evaluation will be broken down as follows:

1-thread execution time — 5 points if the 1-thread execution time is ≤ 2× the sequential time, 1
point if it terminates correctly (regardless of performance), and 0 points if the 1-thread execution
does not terminate with the correct answer.

2-thread execution time — 5 points if the 2-thread execution time is ≤ 2/3× the 1-thread time
(speedup ≥ 1.5), 2 points if it is ≤ the 1-thread time (speedup ≥ 1), 1 point if it terminates
correctly (regardless of performance), and 0 points if the 2-thread execution does not terminate
with the correct answer.

4-thread execution time — 5 points if the 4-thread execution time is ≤ 4/7× the 1-thread time
(speedup ≥ 1.75), 2 points if it is ≤ the 1-thread time (speedup ≥ 1), 1 point if it terminates
correctly (regardless of performance), and 0 points if the 4-thread execution does not terminate
with the correct answer.

8-thread execution time — 5 points if the 8-thread execution time is ≤ 1/2× the 1-thread time
(speedup ≥ 2), 1 point if it terminates correctly (regardless of performance), and 0 points if the
8-thread execution does not terminate with the correct answer.

16-thread execution time — 5 points if the 16-thread execution time is ≤ 1/2× the 1-thread time
(speedup ≥ 2), 1 point if it terminates correctly (regardless of performance), and 0 points if the
16-thread execution does not terminate with the correct answer.

3. [Homework report (15 points)]
You should submit a brief report summarizing the design and implementation of the parallel constructs
used in your parallel MST algorithm, and explain why you believe that the implementation is correct,
including why it is free of data races, deadlocks, and livelocks.

Your report should also include the following measurements for both parts 1 and 2:

(a) Output of the provided correctness tests in BoruvkaCorrectnessTest.java.

(b) Output of the provided performance tests in BoruvkaPerformanceTest.java for your selected
input, executed with 1, 2, 4, 8, and 16 threads.

Please place the report file(s) in the top-level hw 4 directory. Remember to commit all your source
code into the subversion repository during your assignment submission.

2.5 Some Implementation Tips

Here are some tips to keep in mind for this homework:

• Given the large overhead of creating Java threads, you should try and get by with just creating a small
number of threads (e.g., one thread per processor core), or a small number of workers if you use HJlib.
Each thread can then share the work of the while-loop in Listing 3.

7 of 8

COMP 322
Spring 2016

Homework 4: due by 12noon on Monday, April 11, 2016

Figure 3: Available parallelism in parallel Boruvka Minimum Spanning Tree algorithm (source: Galois MST
description).

• Figure 3 illustrates how the available parallelism decreases as more and more merge steps are performed.
This suggests that the actual parallelism exploited (e.g., number of threads) should be reduced as the
contracted graph reaches certain threshold sizes (perhaps even going down to sequential execution at
the very end).

• The work-list is implemented as a LinkedList in the sequential version of SeqBoruvka.java. It will
need to be implemented as a thread-safe collection when multiple while iterations are executed in paral-
lel. Two java.util.concurrent classes that can be useful for this purpose are ConcurrentLinkedQueue
and ConcurrentHashMap. You’re welcome to implement your own data structure if you choose e.g.,
by using AtomicInteger operations to manage indexing in a shared array. (Note that the number of
insertions in the work-list is bounded by the initial number of nodes.)

• In addition to changes in ParBoruvka.java, you may find it convenient to modify ParComponent.java

to add some form of mutual exclusion constructs to manage cases when two threads collide on the same
node when trying to contract a pair. For mutual exclusion, you can try using Java’s built-in locks with
the synchronized statement and the use of wait-notify operations as needed, or you can explicitly
allocate a java.util.concurrent.locks.ReentrantLock for each node/component. One advantage
of ReentrantLock is that it supports a tryLock() method that allows a thread to query the status
of a lock without blocking on the request. The potential disadvantage is that it incurs extra space
overhead, which may indirectly impact execution time.

8 of 8

http://iss.ices.utexas.edu/?p=projects/galois/benchmarks/mst
http://iss.ices.utexas.edu/?p=projects/galois/benchmarks/mst

	Written Assignments (40 points total)
	HJ isolated constructs vs. Java atomic variables (20 points)
	Written Assignment: Dining Philosophers Problem (20 points)

	Programming Assignment: Minimum Spanning Tree of an Undirected Graph (60 points)
	Boruvka's algorithm to compute the Minimum Spanning Tree of an Undirected Graph
	Reference Sequential Implementation of Boruvka's algorithm
	Roadway Data
	Your Assignment: Parallel Minimum Spanning Tree Algorithm using Java Threads
	Some Implementation Tips

