
COMP 322 Spring 2016

Lab 2: Abstract Metrics
Instructor: Vivek Sarkar, Co-Instructor: Shams Imam

Course Wiki: http://comp322.rice.edu

Staff Email: comp322-staff@mailman.rice.edu

Goals for this lab

• Understand abstract metrics

• Understand actual speedup metrics

• One HJlib API: doWork

1 Setup

As in lab 1, download the lab 2 project on your machine using one of the following methods. Note: The
URL for lab 2 is https://svn.rice.edu/r/comp322/turnin/S16/NETID/lab 2/ where you will need to
replace NETID with your net id.

1. Download the project using the IntelliJ support for Subversion (Instructions with Images).

2. Download the project using the command line (Demo Video).

3. If you do not have subversion set up on your machine, you can download the lab 2.zip file and manually
set up the project on IntelliJ. Then you can use the svn commit command to submit your changes.

Note that if you have the -javaagent set up in your IntelliJ run configuration, you can use standard IntelliJ
debugging features (e.g. breakpoints) to debug your code.

2 ReciprocalArraySum Program Revisited

This week we will revisit the simple two-way parallel array sum program introduced last week and in the
Demonstration Video for Topic 1.1. You will edit the ReciprocalArraySum.java program provided in your
svn repository for this exercise (do not use the version from the video lecture). There are TODOs in the
ReciprocalArraySum.java file guiding you on where to place your edits.

• The goal of this exercise is to create an array of N random doubles, and compute the sum of their
reciprocals in several ways, then comparing the benefits and disadvantages of each:

– Sequentially in method seqArraySum().

– In parallel using two asyncs in method parArraySum 2asyncs(). You have already written code
almost exactly like this in Lab 1 last week! Remember to add the calls to doWork() as seen in the
seqArraySum() method to keep track of abstract metrics. For the default input size, our solution
achieved an ideal parallelism of just under 2.

– In parallel using four asyncs in method parArraySum 4asyncs(). You are essentially creating
a version of parArraySum 2asyncs that uses 4 asyncs instead of 2. Think about the following
questions: How do you want to split up the work among the 4 tasks? Equally? Is this the best
way? For the default input size, our solution achieved an ideal parallelism of just under 4.

1 of 3

http://comp322.rice.edu
mailto:comp322-staff@mailman.rice.edu
http://www.cs.rice.edu/~vs3/hjlib/doc/edu/rice/hj/Module0.html#doWork-long-
https://wiki.rice.edu/confluence/display/PARPROG/Using+IntelliJ+to+Download+and+Run+lab_1
https://www.youtube.com/watch?v=1eYdHlj6EUM
https://wiki.rice.edu/confluence/download/attachments/4435861/lab_2.zip?api=v2
https://edge.edx.org/courses/RiceX/COMP322/1T2014R/courseware/a900dd0655384de3b5ef01e508ea09d7/be41f5f2b11a4445aa4be174e94f1717/


COMP 322
Spring 2016

Lab 2: Abstract Metrics

– Lastly, in parallel using eight asyncs in method parArraySum 8asyncs(). You are essentially
creating a version of parArraySum 2asyncs that uses 8 asyncs instead of 2. Think about the
following questions: Do you really want to have to manually create 8 asyncs manually? Is there a
better way you could write this function? Remember that copying and pasting code is generally
discouraged. For the default input size, our solution achieved an ideal parallelism of just under 8.

• Compile and run the program in IntelliJ to ensure that the program runs correctly without your
changes. Follow the instructions for “Step 4: Your first project” in https://wiki.rice.edu/confluence/

pages/viewpage.action?pageId=14433124. If you’re not using IntelliJ, you can do this by running
the mvn clean compile exec:exec -Preciprocal command as specified in the README file.

Be sure you run the ReciprocalArraySumTest file, not the ReciprocalArraySum file.

• Compare the abstract metric results and the actual speedup metric results and be able to explain the
discrepancies before leaving lab. Note that the actual speedups depend on the input array size, which
is 106 for today’s lab, as well as the characteristics of your laptop.

3 Parallelizing computing Combinations

A combination is an arrangement of all or part of a set of objects, with regard to the order of the arrangement.
You are provided a sequential solution to find the number of combinations that is possible from a list of
n elements in Combinations.java. The provided solution relies on the use of a functional style of lists
(FunctionalList.java).

Your task in this lab is to parallelize the provided solution using only the finish and async constructs.
There is a TODO in the Combinations.java file guiding you on where to place your edits. Try to maximize
the amount of parallelism in the computation and inspect the parallelism you are able to exploit by viewing
the results computed by abstract metrics. For the default input of size 8, our solution achieved an ideal
parallelism of over 5.5. You can verify the correctness of your solution by running the CombinationsTest

test file.

NOTE: You may not modify the FunctionalList.java file for this lab (unless you need to correct checkstyle
errors).

4 Demonstrating and submitting in your lab work

For this lab, you will need to demonstrate and submit your work before leaving, as follows.

1. Show your work to an instructor or TA to get credit for this lab. They will want to see your files
submitted to Subversion in your web browser, the passing unit test on your laptop, and the passing
result in the autograder UI.

For both the programs (ReciprocalArraySum and Combinations) you wrote today:

• What is the trend in the abstract metrics as the number of asyncs increases?

• What is the trend in the actual speedup metrics as the number of asyncs increases?

• Is there a dependency between these two trends? If so, what is this dependency? What might be
causing it? How might you go about resolving this slowdown problem?

2. For the Combinations program explain the critical path you obtain from the parallel version of your
program. It might help to inspect the work done and critical path length of your programs with input
values of 0, 1, 2, and 3.

2 of 3

https://wiki.rice.edu/confluence/pages/viewpage.action?pageId=14433124
https://wiki.rice.edu/confluence/pages/viewpage.action?pageId=14433124


COMP 322
Spring 2016

Lab 2: Abstract Metrics

3. Check that all the work for today’s lab is in the lab 2 directory. Enter the answers to the above
questions in a file named lab 2 written.txt in the lab 2 directory. If not, make a copy of any
missing files/folders there.

4. Submit all your changes in the lab 2 directory using subversion. Remember to explicitly add any new
files (e.g. your report or any new Java files) you created into the subversion repository.

3 of 3


	Setup
	ReciprocalArraySum Program Revisited
	Parallelizing computing Combinations
	Demonstrating and submitting in your lab work

