COMP 322 Spring 2016

Lab 3: DIY HJ-lib Programming, Futures, HJ-Viz

Instructors: Vivek Sarkar, Shams Imam

Course wiki: http://comp322.rice.edu

Staff Email: comp322-staffQrice.edu

Goals for this lab

e Learn how to use HJ-lib on your own (without maven), and how to optionally generate abstract metrics
e Experiment with functional programming and futures, including the future| API

e Learn how to use HJ-Viz to visualize Computation Graphs (CGs) for small inputs

Downloads

Download the .zip file for this lab located in the Lab 3 entry towards the botton of the course web site,
http://comp322.rice.edu. It contains the following:

e Three .java source files, AsyncFinishTest. java, BinaryTreeTest. java, and BinaryTrees. java.
e A directory named Jars containing three . jar files that you will use today.

e A directory named hjviz for the HJ-Viz part of the lab.

1 Setting up an HJ-lib project from scratch

1.1 Creating Project Structure and adding External Dependencies

For this exercise our first task is to structure our project. This was done automatically for you in Lab 1 and
Lab 2 by using maven, but now you can learn how to do it yourself manually.

Create an IntelliJ project using the three java files in lab_3. zip. You should see a project structure similar
to Figure[]]

v [E3PushLab
» [.idea
P} AsyncFinishTest.java
[® BinaryTrees.java
D; BinaryTreeTest.java

il External Libraries

Figure 1: Initial Directory Layout of the project

e Create two folders one for source files and the other for test files. Add folders (as shown in Figure
and re-organize the files as shown in Figure[3] Note, we have added the source files in main (you may
choose any name) and the test files in test (you may choose any name).

1of|§|

http://comp322.rice.edu
mailto:comp322-staff@rice.edu
http://www.cs.rice.edu/~vs3/hjlib/doc/edu/rice/hj/Module1.html#future-edu.rice.hj.api.HjSuspendingCallable-
http://comp322.rice.edu

COMP 322
Spring 2016

Lab 3: DIY HJ-lib Programming, Futures, HJ-Viz

& v
v CaPushlab
> Cl.idea
[3 AsyncFinishTest.java
3 BinaryTrees.java
[BinaryTreeTest.java
il External Libraries

New

a6 Cut
1l Copy
Copy Path
Copy as Plain Text
Copy Reference
M Paste
[# Jump to Source
Find Usages
Analyze

Figure

B
v [aPushLab
» O
A=
P}
v O
)
P}

[& AsyncFinishTestjava [BinaryTrees java

[BinaryTreeTest java

Project SDK is not defined
org.junit.After
org. junit.Test

java.util.HashMap
java.util.Map

edu_rica hi MaduleEventLogging.*
> [File i.HjEventLogger . EventType

[Directory
8X

®C
©8C

[HTMLFile

XSLT Stylesheet
2 {

~0%C Edit File Templates...

8V
8L

HjSystenProperty. resetConfigurations()

@Test
loggingTest() {

2: Creating folders

[;} Binar

Project

il External Libraries

Figure 3: A screen

[Project

> B.id

< 1: Project

v [ZPushlLah (~/Nacumante

grab of the new folder structure

Now we need to add our dependencies for the Java project. Open module settings, as shown in Figure[d

/Buchi ahy
New
Add Framework Support...

, Cut
Copy
Copy Path
Copy as Plain Text
Copy Reference

i [l Paste

i Exterr

* 2: Favorites

% 6:TODO

]

Find Usages
Find in Path
Replace in Pat]
Analyze

Refactor

Add to Favorites
Show Image Thumbnails

Reformat Code...
Optimize Imports...
Remove Module

Make Module 'PushLab’
Compile Module 'PushLab’

Local History
5 Synchronize 'PushLab'

Reveal in Finder

[Compare With...

Open Module Settings
Move Module to Group
Mark Directory As

@ Create Gist...

Figure 4: Opening module settings

e Under the ‘Projects’ tab, set Project SDK as 1.8 and Project Language Level as 8, as shown in Figure[5}

20f|§|

COMP 322 Lab 3: DIY HJ-lib Programming, Futures, HJ-Viz
Spring 2016

[XON) Project Structure

Project name:
PushLab

Project Project SDK:
This SDK is default for all project modules.
A module specific SDK can be configured for each of the modules as required.

< 1.8 New... Edit

Project language level:
This language level is default for all project modules.
A module specific language level can be configured for each of the modules as required.

8 - Lambdas, type annotations etc. v

Project compiler output:

This path is used to store all project compilation results.

A directory corresponding to each module is created under this path.

This directory contains two subdirectories: Production and Test for production code and test sources, respectively|

Figure 5: Configuring the Project SDK and Language Level

e Under the ‘Libraries’ tab, click on add(+) > New Project Library from Java. Locate each .jar file
under the Jars directory on your local machine and add each one through the dialog shown in Figure [0}

+
New Project Library
il Java

From Maven...

E2 Scala SDK
Libraries

Figure 6: Adding the HJlib dependency

e After adding the External Dependencies your project structure should look like this :

& Project - [® AsyncFinishTestjava [® BinaryTrees.java
v [3PushLab (~/Documents/PushLab)
» O
v O
e}
A=

thE | Librari BinaryTreeTest TestCase {
B External Libraries

» (2<1.8> testBinaryTrees(){
» [hjlib-cooperative-0.1.7
» [Ciijunitjunit:3.8.2

» [@org.ow2.asm:asm-debug-all:5.0.2 launchHabaneroApp(() -> {

[1 results =

finish(() — {
async(() = {
BinaryTrees. checkTree()

1.2 Add sources for our project files and add VM options

e Open module settings, and under the ‘Modules’ tab > Sources, mark source folder (‘main’ in my case)
as Sources :

30f|§|

COMP 322 Lab 3: DIY HJ-lib Programming, Futures, HJ-Viz

Spring 2016

[XX) Project Structure
+ o
[PushLab

Name: |PushLab

Sources Paths Dependencies

Modules Language level: = Project default v

Mark as: [3Sources[] TestsE2ResourcesE2 Test Resources [Excluded
v [/Users/Ronnie/Documents/PushLab
v .idea
[copyright
Elibraries
£ main
[[J Sources s
B Tests XT
esources
2 Test Resources
Excluded XE

+ Add Content Root
/Users/../Documents/PushLab X|

X New Folder...

e Under the same ‘Modules’ tab > Sources, mark tests folder (‘test’ in my case) as Tests :

[J Project Structure
. P
Name: | PushLab
L3 PushLab

Sources Paths Dependencies

Modules Language level: | Project default v
Mark as: [JSources[]TestsE2Resourcesfz Test Resources 1 Excluded
v [/Users/Ronnie/Documents/PushLab

v .idea
[copyright

+ Add Content Root

/Users/.../Documents/PushLab X

Cllibraries
[main

Bte
[3 Sources XS

[Tests XT

L2 Resources

E2 Test Resources
Excluded XE

EX New Folder...

o After marking your sources and tests your content root should look like :

Name: | PushLab
Sources Paths Dependencies

Language level: | Project default v

Mark as: [JSourcesE]TestsE2Resourcesfz Test Resources 1 Excluded

v [/Users/Ronnie/Documents/PushLab
v [.idea

+ Add Content Root

=) i /Users/../Documents/PushLab
copyrig|

Ellibraries
B main
[test

e We need to add the Output folder for our project, under the same ‘Modules’ tab > Paths, click on Use

module compile output path —

for Output Path : add < your folder path > /out/production/ﬂ
for Test Output Path : add < your folder path > /out/test/T
On my machine it looks like :

e Now we need to add the VM options, go to Run/Debug configurations and under ‘Defaults’ tab >

IPlease do not add the angle brackets (only folder path, check figure for reference)

40f|§|

COMP 322 Lab 3: DIY HJ-lib Programming, Futures, HJ-Viz
Spring 2016

+ %
3 PushLab

Name: | PushLab
Sources Paths Dependencies
Compiler output
Inherit project compile output path
® Use module compile output path
Output path: | /Users/Ronnie/Documents/PushLab/out/production/
Test output path: | /Users/Ronnie/Documents/PushLab/out/test/

¥ Exclude output paths

JavaDoc

Manage external JavaDocs attached to this module. External JavaDoc override JavaDoc annotations you might have
in your module.

Application add the -javaagent: < Path/to/the/HJ-lib/jar/ on/your/local/machine > El for the VM
options :

[JON] Run/Debug Configurations

Configuration Code Coverage Logs
Main class
VM options: -javaagent:/Users /Ronnie/Documents /TestComp322/Jars/hjlib-cooperative-C

v % Defaults Program arguments:

o ider lcaion Working directory: /Users /Ronnie/Docu ts/PushLab
Android Tests

¥ Ant Target Environment variables:

= Applet

= Application Use classpath of module: | <no module>

(& Gradle

& Griffon Use alternative JRE:

® Groovy

[l JAR Application Enable capturing form snapshots
JUnit
Maven

& Plugin

< Remote
SBT Task ~ Before launch: Make
Scala Console
Scala Script

i Make

o Similarly add the VM options for the jUnit under the ‘Defaults’ tab (same -javaagent:../../):

[JoX] Run/Debug Configurations

Configuration Code Coverage Logs

Test kind: Class v Fork mode: | none
Class:

v % Defaults
Android Application
Android Tests VM options: -javaagent:/Users /Ronnie/Documents /TestComp322/Jars/hjlib-cooperative-0.1
¥ Ant Target
=] Applet

= Application Working directory: $MODULE_DIR$
(& Gradle
& Griffon

® Groovy
[l JAR Application Use classpath of mo... | <no module>

Environment variables:

JUnit
Maven
& Plugin
</ Remote
SBT Task ~ Before launch: Make
Scala Console

Use alternative JRE:

i Make

2Please do not add the angle brackets (only folder path, check figure for reference)

50f|§|

COMP 322 Lab 3: DIY HJ-lib Programming, Futures, HJ-Viz
Spring 2016

2 Manually turning on HJ-lib Abstract Metrics

Abstract metrics were turned on in Lab 2 but were off by default in Lab 1. In this exercise, you will learn
how to use the HJ-lib API to optionally turn on abstract metrics. First, you will need to add two import
statements:

e import edu.rice.hj.runtime.config.HjSystemProperty

e import static edu.rice.hj.ModuleO.abstractMetrics

Now, to turn ‘on’ abstract metrics you need to add “ HjSystemProperty.abstractMetrics.setProperty(true)”
inside each test file, just before the call to “launchHabaneroApp()”.

The purpose of the call to launchHabaneroApp () is to launch the specified code expression as a lambda to be
executed in parallel by the HJ-1ib runtime, while all code before and after the call to launchHabaneroApp ()
is executed as standard Java code. For the current version of HJ-lib, it is good practice to include a top-level
finish in the body of launchHabaneroApp() In particular, the current implementation of abstract metrics
may not print correct results if a top-level £inish is omitted in launchHabaneroApp().

3 Getting Familiar with Futures

In this exercise, you are given sequential code for a functional program that constructs a binary tree, and
then traverses it using calls to checkTree() and itemCheck(). Your task is to convert it to a correctly
executing parallel HJ-lib program with futures. Once correctly implemented, your code should pass the
provided BinaryTreeTest. Think back on your previous experience with functional programming, and your
knowledge of futures and how they relate to your task.

1. Compile and run the original BinaryTreeTest program and note that it fails.

2. Now modify the program by replacing standard object references by future object references, e.g., by
replacing TreeNode by HjFuture<TreeNode>.

3. After you get your modified program to work, think about the new WORK and CPL values.

4 Visualize Parallelism using HJ-Viz

4.1 Prerequisites

e Python 2.7 (http://python.org/)
e GraphViz (http://graphviz.org/)

If you're on Linux, we suggest using your package manager. Homebrew and macports on Mac have the
software as well. For GraphViz:

e Windows: http://graphviz.org/pub/graphviz/stable/windows/graphviz-2.38.msi

e Mac: http://www.graphviz.org/pub/graphviz/stable/macos/mountainlion/graphviz-2.36.0.
pkg

60f|§|

http://graphviz.org/pub/graphviz/stable/windows/graphviz-2.38.msi
http://www.graphviz.org/pub/graphviz/stable/macos/mountainlion/graphviz-2.36.0.pkg
http://www.graphviz.org/pub/graphviz/stable/macos/mountainlion/graphviz-2.36.0.pkg

COMP 322 Lab 3: DIY HJ-lib Programming, Futures, HJ-Viz
Spring 2016

4.2 Assignment

HJ-Viz generates interactive Computation Graphs (CGs) of parallel programs by analyzing event logs. Pro-
grammers can use the visualization of the CG by HJ-Viz to pinpoint potential sources of bugs and points of
improvement for parallel performance by highlighting the critical path.

The goal of tonight’s lab is to write a program whose output graph drawn using HJ-Viz, matches the provided
figure below and to verify its correctness using the tool.

fork

SPAWN
IoN- —p activity
CONTINUATION _> ‘
fork
activity fork activity

ﬁi AN
|

join
join

Figure 7: fork nodes indicate the start of a finish scope. join nodes correspond to the end of a finish scope.
activity nodes refer to the start of an async task. Square nodes labeled by a number x shows that the task
did x units of abstract work. Green edges direct from the enclosing scope to the spawned async task. Red
edges direct from the ending task to the closing scope. Black edges indicate sequential dependence within
the same task. Bold edges are on the critical path.

We have provided a skeleton file, AsyncFinishTest.java in your turnin repository as well.

e Follow section Pl to add the Abstract Metrics for this file as well.

e Add HjSystemProperty.eventLogging.setProperty(true); to the provided file, before the call to
launchHabaneroApp(). This option activates event logging in the runtime

e Add ModuleEventLogging.dumpEventLog(<file path>)E|; within the call to launchHabaneroApp,
after your async-finish constructs, replacing < file path> B with the path to a file to write the output
log (e.g., “output.log”).

e Use only finish and async constructs to write a program whose output through HJ-Viz matches the
given figure.

3 Please do not add the angle brackets (only folder path)

70f|§|

COMP 322 Lab 3: DIY HJ-lib Programming, Futures, HJ-Viz
Spring 2016

e On running the AsyncFinishTest.java file the code should generate a .log file.
o We have provided a HJ-Viz folder with all the required files to run HJ-Viz

1. HJ-Viz is a Python program. Execute ‘python main.py <path/to/the/log/file >’BL., where logfile
is the path to the .log file produced in the previous step.

2. On Windows, you should be able to drag and drop the log file onto main.py in the file explorer.
3. The graph output resides in output.html.
4. See README for details.

e Show a teaching assistant that the output is correct.

Turning in your lab work
For each lab, you will need to turn in your work before leaving, as follows.

1. Show your work to an instructor or TA to get credit for this lab. Be prepared to explain the lab at a
high level, as well as answer the following question:

e What was your strategy in rewriting the provided sequential binary tree as a parallel one? How
did functional programming aid you in this pursuit?

2. Turn in your code to SVN.

e Your lab_3 repository is currently empty. Import it as subversion from IntelliJ by checking out
into where you extracted the project zip previously downloaded. https://svn.rice.edu/r/
comp322/turnin/S16/netid/lab_3

Window Help Boc @
Local History >
Enable Version Control Integration...
VCS Operations Popup... ~V
Apply Patch...
Checkout from Version Control > GitHub
Import into Version Control > CVSs
Browse VCS Repository > Git
| Mercurial
1 Subversion
TFS

J Repositories: |T E] = t

[JON] New Repository Location
Repository URL:

https://svn.rice.edu/r/comp322/turnin/S16/netid/lab_3 v

Cancel | (UOKIL

e Use IntelliJ to add the Java files to Subversion, and commit your solutions.

80f|§|

https://svn.rice.edu/r/comp322/turnin/S16/netid/lab_3
https://svn.rice.edu/r/comp322/turnin/S16/netid/lab_3

COMP 322
Spring 2016

Lab 3: DIY HJ-lib Programming, Futures, HJ-Viz

lab_3.thisisazip

1
| Add to VCS L #A

€ & NewClass |
|1 External Librarie!
¥ Cut
[Copy
Copy Path
Copy as Plain Text

New

~ Copy Reference X{38C

[l Paste
[Jump to Source

Find Usages
Analyze

Refactor

Clean Python Compiled Files

Add to Favorites

Browse Type Hierarchy
Reformat Code...
Optimize Imports...
Delete...

Make Module 'lab_3'
Compile 'NewClass.java'

Local History

> Ignore >

Check In
Update File...
Integrate File...

Edit Properties
Set Property...
O Revert... 8z
Resolve Text Conflict...
Mark Resolved...
Cleanup

Show Current Revision
[Compare with the Same Repository Version
Compare with Latest Repository Version

> Compare with...

Compare with Branch...
[® Show History

Show History for Selection

Annotate

Branch or Tag...

Lock...
Unlock
Relocate...

>
Browse Changes...

() Synchronize 'NewClass.java'

|

90f|§|

	Setting up an HJ-lib project from scratch
	Creating Project Structure and adding External Dependencies
	Add sources for our project files and add VM options

	Manually turning on HJ-lib Abstract Metrics
	Getting Familiar with Futures
	Visualize Parallelism using HJ-Viz
	Prerequisites
	Assignment

