
COMP 322: Fundamentals of
Parallel Programming

Lecture 23: Java Threads,
Java synchronized statement

COMP 322 Lecture 23 14 March 2016

Vivek Sarkar, Shams Imam
Department of Computer Science, Rice University

Contact email: vsarkar@rice.edu, shams.imam@twosigma.com

http://comp322.rice.edu/

Unit 7.1: Introduction to Java threads and
java.lang.Thread class

• Execution of a Java program begins with an instance of Thread
created by the Java Virtual Machine (JVM) that executes the
program’s main() method.

• Parallelism can be introduced by creating additional instances of
class Thread that execute as parallel threads.

2 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

A lambda can be
passed as a Runnable

start() and join() methods
• A Thread instance starts executing when its start() method

is invoked
— start() can be invoked at most once per Thread instance
— As with async, the parent thread can immediately move to the next

statement after invoking t.start()

• A t.join() call forces the invoking thread to wait till thread t
completes.
— Lower-level primitive than finish since it only waits for a single

thread rather than a collection of threads
— No restriction on which thread performs a join on which thread, so

it is possible to create a deadlock cycle using join() even when
there are no data races
– Declaring thread references as final does not help because the

new() and start() operations are separated for threads (unlike
futures, where they are integrated)

3 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

1. // Start of main thread

2. sum1 = 0 sum2 = 0; // sum1 & sum2 are static fields

3. Thread t1 = new Thread(() -> {

4. // Child task computes sum of lower half of array

5. for(int i=0; i < X.length/2; i++) sum1 += X[i];

6. });

7. t1.start();

8. // Parent task computes sum of upper half of array

9. for(int i=X.length/2; i < X.length; i++) sum2 += X[i];

10. // Parent task waits for child task to complete (join)

11. t1.join();

12. return sum1 + sum2;

Two-way Parallel Array Sum
using Java Threads

4 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

1. // Start of Task T0 (main program)

2. sum1 = 0; sum2 = 0; // sum1 & sum2 are static fields

3. finish(() -> {

4. async(() -> {

5. // Child task computes sum of lower half of array

6. for(int i=0; i < X.length/2; i++) sum1 += X[i];

7. });

8. // Parent task computes sum of upper half of array

9. for(int i=X.length/2; i < X.length; i++) sum2 += X[i];

10. });

11. // Parent task waits for child task to complete (join)

12. return sum1 + sum2;

Compare with Two-way Parallel Array Sum
using HJ-Lib’s finish & async API’s

5 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

HJlib runtime uses Java threads as
workers

• HJlib runtime creates a small number of worker threads in a thread pool,
typically one per core

• Workers push async’s/continuations into a logical work queue

• when an async operation is performed

• when an end-finish operation is reached

• Workers pull task/continuation work item when they are idle

6 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Unit 7.2: Objects and Locks in Java ---  
synchronized statements and methods

• Every Java object has an associated lock acquired via:
— synchronized statements

– synchronized(foo) { // acquire foo’s lock  
 // execute code while holding foo’s lock 
} // release foo’s lock

— synchronized methods
– public synchronized void op1() { // acquire ‘this‘ lock 

 // execute method while holding ‘this’ lock 
} // release ‘this’ lock

• Java language does not enforce any relationship between object used for locking and
objects accessed in isolated code
— If same object is used for locking and data access, then the object behaves like a

monitor
• Locking and unlocking are automatic

— Locks are released when a synchronized block exits
• By normal means: end of block reached, return, break
• When an exception is thrown and not caught

7

Locking guarantees in Java
• It is preferable to use java.util.concurrent.atomic or HJlib isolated

constructs, since they cannot deadlock
• Locks are needed for more general cases. Basic idea is for JVM to

implement synchronized(a) <stmt> as follows:
1. Acquire lock for object a
2. Execute <stmt>
3. Release lock for object a

• The responsibility for ensuring that the choice of locks correctly
implements the semantics of isolation lies with the programmer.

• The main guarantee provided by locks is that only one thread can
hold a given lock at a time, and the thread is blocked when
acquiring a lock if the lock is unavailable.

8 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Deadlock example with Java
synchronized statement

• The code below can deadlock if leftHand() and rightHand() are called concurrently from
different threads
— Because the locks are not acquired in the same order

 public class ObviousDeadlock {
 . . .
 public void leftHand() {
 synchronized(lock1) {
 synchronized(lock2) {
 for (int i=0; i<10000; i++)
 sum += random.nextInt(100);
 }
 }
 }
 public void rightHand() {
 synchronized(lock2) {
 synchronized(lock1) {
 for (int i=0; i<10000; i++)
 sum += random.nextInt(100);
 }
 }
 }
 }

9 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Deadlock avoidance in HJ with object-
based isolation

• HJ implementation ensures that all locks are acquired in the same order

• ==> no deadlock
 public class NoDeadlock1 {
 . . .
 public void leftHand() {
 isolated(lock1, lock2) {
 for (int i=0; i<10000; i++)
 sum += random.nextInt(100);

 }
 }
 public void rightHand() {
 isolated(lock2,lock1) {
 for (int i=0; i<10000; i++)
 sum += random.nextInt(100);
 }
 }
 }
 }

10 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Dynamic Order Deadlocks
• There are even more subtle ways for threads to deadlock due to inconsistent lock ordering

— Consider a method to transfer a balance from one account to another:
public class SubtleDeadlock {
 public void transferFunds(Account from,
 Account to,
 int amount) {
 synchronized (from) {
 synchronized (to) {
 from.subtractFromBalance(amount);
 to.addToBalance(amount);
 }
 }
 }
 }
— What if one thread tries to transfer from A to B while another tries to transfer from B to A ?

Inconsistent lock order again – Deadlock!

11 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Avoiding Dynamic Order Deadlocks
• The solution is to induce a lock ordering
— Here, uses an existing unique numeric key, acctId, to establish an order

public class SafeTransfer {
 public void transferFunds(Account from, Account to, int amount) {
 Account firstLock, secondLock;  

 if (fromAccount.acctId == toAccount.acctId) 
 throw new Exception(“Cannot self-transfer”); 
 else if (fromAccount.acctId < toAccount.acctId) { 
 firstLock = fromAccount;  
 secondLock = toAccount;  
 }  
 else {  
 firstLock = toAccount;  
 secondLock = fromAccount;  
 }  
 synchronized (firstLock) {

 synchronized (secondLock) {
 from.subtractFromBalance(amount);
 to.addToBalance(amount);
 }
 }
 }  

 }

12 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Avoiding Dynamic Order Deadlocks
• The solution is to induce a lock ordering
— Here, uses an existing unique numeric key, acctId, to establish an order

public class SafeTransfer {
 public void transferFunds(Account from, Account to, int amount) {
 Account firstLock, secondLock;  

 if (fromAccount.acctId == toAccount.acctId) 
 throw new Exception(“Cannot self-transfer”); 
 else if (fromAccount.acctId < toAccount.acctId) { 
 firstLock = fromAccount;  
 secondLock = toAccount;  
 }  
 else {  
 firstLock = toAccount;  
 secondLock = fromAccount;  
 }  
 synchronized (firstLock) {

 synchronized (secondLock) {
 from.subtractFromBalance(amount);
 to.addToBalance(amount);
 }
 }
 }  

 }

13 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Java’s Object Locks are Reentrant
• Locks are granted on a per-thread basis

— Called reentrant or recursive locks
— Promotes object-oriented concurrent code

• A synchronized block means execution of this code requires the current thread to hold this lock
— If it does — fine
— If it doesn’t — then acquire the lock

• Reentrancy means that recursive methods, invocation of super methods, or local callbacks, don’t
deadlock

 public class Widget {
 public synchronized void doSomething() { ... }
 }
 public class LoggingWidget extends Widget {
 public synchronized void doSomething() {
 Logger.log(this + ": calling doSomething()");
 super.doSomething(); // Doesn't deadlock!  

 }  
 }

14 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Monitors
• One definition of monitor is a thread-safe class, object, or module

that uses wrapped mutual exclusion in order to safely allow access
to a method or variable by more than one thread. The defining
characteristic of a monitor is that its methods are executed with
mutual exclusion: At each point in time, at most one thread may be
executing any of its methods. Using a condition variable(s), it can
also provide the ability for threads to wait on a certain condition
(thus uhttps://en.wikipedia.org/wiki/Monitor_(synchronization)sing
the above definition of a "monitor"). For the rest of this article, this
sense of "monitor" will be referred to as a "thread-safe object/
class/module”.

• Source: https://en.wikipedia.org/wiki/Monitor_(synchronization)

15 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

How to convert a sequential library to a
monitor in HJ vs. Java?

HJ approach:

• Use object-based isolation to ensure that each call to a public method is isolated on “this” e.g.,

public void add(...) { isolated(this) { } }

• Can also use general isolated statement, but that is overkill e.g.,
public void add(...) { isolated { } }

Java approach:
• Use Java’s synchronized statement instead of object-based isolation e.g.,

public void add(...) { synchronized(this) { } }
or equivalently
public synchronized void add(...) { }

• Both HJ and Java programs can use specialized implementations of monitors
available in java.util.concurrent
— ConcurrentHashMap, ConcurrentLinkedQueue, CopyOnWriteArraySet

16 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

