
Instructors: Vivek Sarkar, Shams Iman
Department of Computer Science, Rice University

{vsarkar, shams}@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 3 15 January 2016

COMP 322: Fundamentals of
Parallel Programming

Lecture 3: Computation Graphs,
Ideal Parallelism

COMP 322, Spring 2016 (V.Sarkar, S.Imam)

One Possible Solution to Worksheet 2
(Reverse Engineering a Computation Graph)

2

1.A();

2.finish { // F1

3. async D();

4. B();

5. {

6. E();

7. finish { // F2

8. async H();

9. F();

10. } // F2

11. G();

12. }

13. } // F1

14. C();

Observations:
• Any node with out-degree > 1 must be an

async (must have an outgoing spawn edge)
• Any node with in-degree > 1 must be an end-

finish (must have an incoming join edge
• Adding or removing transitive edges does not

impact ordering constraints

COMP 322, Spring 2016 (V.Sarkar, S.Imam)

Ideal Parallelism (Recap)

• Define ideal parallelism of
Computation G Graph as the
ratio, WORK(G)/CPL(G)

• Ideal Parallelism only
depends on the computation
graph, and is the speedup that
you can obtain with an
unbounded number of
processors

3

1

1

1

4 1 4

1 1 1 1

31 1 1

1 1

1

1
Example:
WORK(G) = 26
CPL(G) = 11
Ideal Parallelism = WORK(G)/CPL(G) = 26/11 ~ 2.36

COMP 322, Spring 2016 (V.Sarkar, S.Imam)

• Computation graphs are referred to as “Gantt charts” in project
management

• Sample project for preparing a printed document
—Source: http://www.gantt.com/creating-gantt-charts.htm

4

Computation Graphs are used in Project
Scheduling as well

COMP 322, Spring 2016 (V.Sarkar, S.Imam)

Scheduling of a Computation Graph on
a fixed number of processors: Example

• node
label =
time(N),
for all
nodes
N in the
graph

5

1

1

1

4 41

1 1 1

31

1

1

1

1

1

1

1

A
Start
time

Proc
1

Proc
2

Proc
3

0 A
1 B
2 C N
3 D N I
4 D N J
5 D N K
6 D Q L
7 E R M
8 F R O
9 G R P
10 H
11 Completion time = 11

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

NOTE: this schedule achieved a completion
time of 11. Can we do better?

COMP 322, Spring 2016 (V.Sarkar, S.Imam)

Scheduling of a Computation Graph on
a fixed number of processors, P

• Assume that node N takes TIME(N) regardless of which processor it
executes on, and that there is no overhead for creating parallel tasks

• A schedule specifies the following for each node
—START(N) = start time
—PROC(N) = index of processor in range 1...P

such that
—START(i) + TIME(i) <= START(j), for all CG edges from i to j

(Precedence constraint)
—A node occupies consecutive time slots in a processor (Non-

preemption constraint)
—All nodes assigned to the same processor occupy distinct time

slots (Resource constraint)

6

COMP 322, Spring 2016 (V.Sarkar, S.Imam)

Greedy Schedule

7

• A greedy schedule is one that never forces a
processor to be idle when one or more nodes are ready
for execution
• A node is ready for execution if all its predecessors
have been executed
• Observations

—T1 = WORK(G), for all greedy schedules
—T∞ = CPL(G), for all greedy schedules

• where TP = execution time of a schedule for
computation graph G on P processors

COMP 322, Spring 2016 (V.Sarkar, S.Imam)

Lower Bounds on Execution Time of
Schedules

• Let TP = execution time of a schedule for
computation graph G on P processors
—Can be different for different schedules

• Lower bounds for all greedy schedules
—Capacity bound: TP ≥ WORK(G)/P
—Critical path bound: TP ≥ CPL(G)

• Putting them together
—TP ≥ max(WORK(G)/P, CPL(G))

8

COMP 322, Spring 2016 (V.Sarkar, S.Imam)

Upper Bound on Execution Time of
Greedy Schedules

9

Proof sketch:
Define a time step to be complete if

≥ P nodes are ready at that time,
or incomplete otherwise

complete time steps ≤ WORK(G)/P

incomplete time steps ≤ CPL(G)

Theorem [Graham ’66]. Any
greedy scheduler achieves

TP ≤ WORK(G)/P + CPL(G)

Start
time

Proc
1

Proc
2

Proc
3

0 A
1 B
2 C N
3 D N I
4 D N J
5 D N K
6 D Q L
7 E R M
8 F R O
9 G R P
10 H
11

COMP 322, Spring 2016 (V.Sarkar, S.Imam)

Bounding the performance of Greedy
Schedulers

Combine lower and upper bounds to get
max(WORK(G)/P, CPL(G)) ≤ TP ≤ WORK(G)/P + CPL(G)

Corollary 1: Any greedy scheduler achieves execution time TP
that is within a factor of 2 of the optimal time (since max(a,b)
and (a+b) are within a factor of 2 of each other, for any a ≥ 0,b
≥ 0).
Corollary 2: Lower and upper bounds approach the same
value whenever

• There’s lots of parallelism, WORK(G)/CPL(G) >> P

• Or there’s little parallelism, WORK(G)/CPL(G) << P

10

COMP 322, Spring 2016 (V.Sarkar, S.Imam)

Abstract Performance Metrics
• Basic Idea

• Count operations of interest, as in big-O analysis
• Abstraction ignores many overheads that occur on real systems

• Calls to doWork()
• Programmer inserts calls of the form, doWork(N), within a step to indicate

abstraction execution of N application-specific abstract operation
• e.g., in the Homework 1 programming assignment (Parallel Sort), we will

include one call to doWork(1) in each call to compareTo(), and ignore the
cost of everything else.

• Abstract metrics are enabled by calling
• HjSystemProperty.abstractMetrics.set(true);

• If an HJ program is executed with this option, abstract metrics are printed at end of
program execution with WORK(G), CPL(G), Ideal Parallelism = WORK(G) / CPL(G)

11

COMP 322, Spring 2015 (V.Sarkar)

Reminders

• Send email to comp322-staff@rice.edu if you do not have access to
Piazza site (otherwise use Piazza for class communications, as far as
possible)

• Office hours today will be held during 2pm - 3pm in Duncan Hall 3092
• Watch videos and read handout for topic 1.5 for next lecture on

Wednesday, Jan 20th
• Complete this week’s assigned quizzes on edX by 11:59pm today (all

quizzes for topics 1.1, 1.2, 1.3, 1.4 including last quiz titled
“Multiprocessor Scheduling”)

• HW1 will be assigned today, and is due by 12noon on Jan 29th

• See course web site for all work assignments and due dates

• http://comp322.rice.edu

12

