COMP 322: Fundamentals of
Parallel Programming

Lecture 3: Computation Graphs,
Ideal Parallelism

Instructors: Vivek Sarkar, Shams Iman
Department of Computer Science, Rice University
{vsarkar, shams}®@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 3 15 January 2016

One Possible Solution to Worksheet 2
(Reverse Engineering a Computation Graph)

1.A();

° e G 2.finish { // F1

3. async D();

& OO o
5. {
6. E();
g 7. finish { // F2
8.
9

async H();
Observations: F();
- Any node with out-degree > 1 must be an 10. } // F2
async (must have an outgoing spawn edge)

* Any node with in-degree > 1 must be an end- i; }G() '
finish (must have an incoming join edge '

- Adding or removing transitive edges does not 13. } // F1
impact ordering constraints 14. cO);

2 COMP 322, Spring 2016 (V.Sarkar, S.Imam) %\d

Ideal Parallelism (Recap)

* Define ideal parallelism of
Computation G Graph as the
ratio, WORK(G)/CPL(G)

 ldeal Parallelism only
depends on the computation
graph, and is the speedup that
you can obtain with an
unbounded number of
processors

Example:
WORK(G) = 26
CPL(G) =11
Ideal Parallelism = WORK(G)/CPL(G) = 26/11 ~ 2.36

3 COMP 322, Spring 2016 (V.Sarkar, S.Imam)

Computation Graphs are used in Project
Scheduling as well

« Computation graphs are referred to as “Gantt charts” in project
management

« Sample project for preparing a printed document
—Source: http://www.gantt.com/creating-gantt-charts.htm

Wiriting 72227 Critical path

Design highlighted

Review In red

Corrections

Paper to printers Gz l

Prirting Gz

4 COMP 322, Spring 2016 (V.Sarkar, S.Imam) A

Scheduling of a Computation Graph on
a fixed number of processors: Example

hode Start |Proc |Proc |Proc

label = time |1 2 3

time(N), 0 —

for all 1 B

nodes 2 ¢ N

N in the D& 3 | b | N |1

graph 4 D N J
5 D N K
6 D Q L
7 E R M
8 F R O
9 G R P
10 H

NOTE: this schedule achieved a completion 11 | Completion time = 11

time of 11. Can we do better?

Scheduling of a Computation Graph on
a fixed number of processors. P

o Assume that node N takes TIME(N) regardless of which processor it
executes on, and that there is no overhead for creating parallel tasks

e A schedule specifies the following for each node
—START(N) = start time
—PROC(N) = index of processor in range 1...P

such that

—START(i) + TIME(i) <= START(j), for all CG edges fromitoj
(Precedence constraint)

—A node occupies consecutive time slots in a processor (Non-
preemption constraint)

—All nodes assigned to the same processor occupy distinct time
slots (Resource constraint)

6 COMP 322, Spring 2016 (V.Sarkar, S.Imam) %\d

Greedy Schedule

» A greedy schedule is one that never forces a
processor to be idle when one or more nodes are ready
for execution

« A node is ready for execution if all its predecessors
have been

* Observations

—T, = WORK(G), for all greedy schedules
—T,=CPL(6), for all greedy schedules

- where T, = execution time of a schedule for
computation graph G on P processors

7 COMP 322, Spring 2016 (V.Sarkar, S.Imam) D

Lower Bounds on Execution Time of
Schedules

- Let T, = execution time of a schedule for
computation graph G on P processors

—Can be different for different schedules
» Lower bounds for all greedy schedules

—Capacity bound: T, =2 WORK(G)/P

—Critical path bound: T, = CPL(G)

 Putting them together
—Tp 2 max(WORK(G)/P, CPL(G))

8 COMP 322, Spring 2016 (V.Sarkar, S.Imam) 7>

Upper Bound on Execution Time of
Greedv Schedules

Theorem [Graham '66]. Any Start (Proc |Proc |Proc
greedy scheduler achieves time 1 " e 3
T, < WORK(G)/P + CPL(G) A
C N
3 D N I
Proof sketch: 4 D N J
Define a time step to-te complete if 5 D N K
> P nodes are-feady at that time, 6 D Q L
or otherwise . . R M
complete time steps < WORK(G)/P 8 i R 9
9 G R P
incomplete time steps ¢« CPL(6G) H
11

9 COMP 322, Spring 2016 (V.Sarkar, S.Imam)

Bounding the performance of Greedy
Schedulers

Combine lower and upper bounds to get
max(WORK(G)/P, CPL(G)) < T, = WORK(G)/P + CPL(G)

Corollary 1: Any greedy scheduler achieves execution time T,

that is within a factor of 2 of the optimal time (since max(a,b)
and (a+b) are within a factor of 2 of each other, forany a2 0,b
20).

Corollary 2: Lower and upper bounds approach the same
value whenever

* There’s lots of parallelism, WORK(G)/CPL(G) >> P
» Or there’s little parallelism, WORK(G)/CPL(G) <<P

10 COMP 322, Spring 2016 (V.Sarkar, S.Imam) &,

Abstract Performance Metrics

e Basic ldea
o Count operations of interest, as in big-O analysis
o Abstraction ignores many overheads that occur on real systems

e Calls to doWork()

e Programmer inserts calls of the form, doWork(N), within a step to indicate
abstraction execution of N application-specific abstract operation

e e.g., inthe Homework 1 programming assignment (Parallel Sort), we will
include one call to doWork(1) in each call to compareTo(), and ignore the
cost of everything else.

e Abstract metrics are enabled by calling
o HjSystemProperty.abstractMetrics.set(true);

e If an HJ program is executed with this option, abstract metrics are printed at end of
program execution with WORK(G), CPL(G), Ideal Parallelism = WORK(G) / CPL(G)

11 COMP 322, Spring 2016 (V.Sarkar, S.Imam) %«g

12

Reminders

Send email to comp322-staff@rice.edu if you do not have access to
Piazza site (otherwise use Piazza for class communications, as far as
possible)

Office hours today will be held during 2pm - 3pm in Duncan Hall 3092

Watch videos and read handout for topic 1.5 for next lecture on
Wednesday, Jan 20th

Complete this week’s assigned quizzes on edX by 11:59pm today (all
quizzes for topics 1.1, 1.2, 1.3, 1.4 including last quiz titled
“Multiprocessor Scheduling”)

HW1 will be assigned today, and is due by 12noon on Jan 29th
See course web site for all work assignments and due dates

- http://lcomp322.rice.edu

»d

COMP 322, Spring 2015 (V.Sarkar)

