
COMP 322: Fundamentals of
Parallel Programming

Lecture 35: General-Purpose GPU (GPGPU)
Computing

Max Grossman, Vivek Sarkar, Shams Imam
Department of Computer Science, Rice University

max.grossman@rice.edu, vsarkar@rice.edu, shams@rice.edu

comp322.rice.edu

COMP 322 Lecture 35 13 April 2016

Demo

• Performance gap between GPUs and multicore CPUs continues to
widen

2 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Single Instruction, Single Data stream (SISD)
A sequential computer which exploits no parallelism in either the instruction or data

streams. e.g., old single processor PC

Single Instruction, Multiple Data streams (SIMD)
A computer which exploits multiple data streams against a single instruction stream to
perform operations which may be naturally parallelized. e.g. graphics processing unit

Multiple Instruction, Single Data stream (MISD)
Multiple instructions operate on a single data stream. Uncommon architecture which is
generally used for fault tolerance. Heterogeneous systems operate on the same data
stream and must agree on the result. e.g. the Space Shuttle flight control computer.

Multiple Instruction, Multiple Data streams (MIMD)
Multiple autonomous processors simultaneously executing different instructions on
different data. e.g. a PC cluster memory space. 

Flynn’s Taxonomy for Parallel
Computers

Single Instruction Multiple Instructions
Single Data SISD MISD
Multiple Data SIMD MIMD

3 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Multicore Processors are examples of
MIMD systems

• Memory hierarchy for a single Intel Xeon Quad-core E5530
processor chip

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core A

L3 unified cache

Main memory

Regs

L1
d-cache

Core B

L1
i-cache

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core C

Regs

L1
d-cache

Core D

L1
i-cache

4 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

8

SIMD computers
• Definition: A single instruction stream is applied to multiple data

elements.
• One program text
• One instruction counter
• Distinct data streams per Processing Element (PE)

• Examples: Vector Processors, GPUs

PE

PE

PE

PE

Source: Mattson and Keutzer, UCB
CS294

5 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

 “CPU-Style” Cores
The “CPU-Style” core is designed to make individual threads speedy.

6 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Fetch/Decode

ALU (Execute)

Out-of-order control logic

Branch predictor logic

Memory pre fetch unit

Large data cache

Execution
contexts 
 
 
 
 

“Execution context” == memory and hardware associated
to a specific stream of instructions (e.g. a thread)
Multiple cores lead to MIMD computers

 GPU Design Idea #1: more slow cores
The first big idea that differentiates GPU and CPU core design:

slim down the footprint of each core.

Slides and graphics based on presentations  
from Andreas Klöckner and Kayvon Fatahalian

7 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Fetch/Decode

ALU (Execute)

Execution
contexts 
 
 
 
 

Idea #1:

Remove the modules that
help a single instruction
execute fast.

 GPU Design Idea #1: more slow cores

See: Andreas Klöckner  
and Kayvon Fatahalian

8 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

 GPU Design Idea #2: lock stepping

9 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

See: Andreas Klöckner  
and Kayvon Fatahalian

Fetch/Decode

ALU

 
 
 
 
 
Shared Ctx Data

Ct

ALU ALU ALU

ALU ALU ALU ALU

Ct Ct Ct

Ct Ct Ct Ct

shared
memory
SIMD model

In the GPU rendering context, the instruction streams are
typically very similar.

Design for a “single instruction multiple data” SIMD model:
share the cost of the instruction stream across many ALUs

Fetch/Decode

ALU (Execute)

Execution
contexts 
 
 
 
 

 GPU Design Idea #2: branching ?

10 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

See: Andreas Klöckner  
and Kayvon Fatahalian

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
Question:

 
What happens when the instruction streams

include branching ?

How can they execute in lock step? 

 GPU Design Idea #2: lock stepping w/
branching

11 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Non branching code;

if(flag > 0){ /* branch */
 x = exp(y);
 y = 2.3*x;
}  
else{
 x = sin(y);
 y = 2.1*x;
}

Non branching code;

ALU ALU ALU ALU ALU ALU ALU ALU

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

T T F T T F F F
✓ ✓ X ✓ ✓ X X X
✓ ✓ X ✓ ✓ X X X

X X ✓ X X ✓ ✓ ✓

X X ✓ X X ✓ ✓ ✓

Time

The cheap branching approach means that some ALUs are idle as all ALUs
traverse all branches [executing NOPs if necessary]

In the worst possible case we could see 1/8 of maximum performance.

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

 GPU Design Idea #3: latency hiding

12 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

See: Andreas Klöckner  
and Kayvon Fatahalian

ALU ALU ALU ALU ALU ALU ALU ALU

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Time

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

work on registers;
work on registers;
work on registers; 

load registers from
main memory;

It takes O(1000) cycles to load data from
off chip memory into the SM registers file

These ALUs are idled (stalled) after a load

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

 GPU Design Idea #3: latency hiding

13 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

See: Andreas Klöckner  
and Kayvon Fatahalian

Fetch/Decode

ALU

 
 
 
 
 
Shared Ctx Data

Ct

ALU ALU ALU

ALU ALU ALU ALU

Ct Ct Ct

Ct Ct Ct Ct

Idea #3: enable fast context switching so the ALUs  
 can efficiently alternate between different tasks.

Fetch/Decode

ALU ALU ALU ALU

ALU ALU ALU ALU

 
 
 

 
 
 

 
 
 

 
 
 

1 2

3 4

 GPU Design Idea #3: context switching

Body Level Five

14 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

See: Andreas Klöckner  
and Kayvon Fatahalian

ALU ALU ALU ALU ALU ALU ALU ALU

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ti
me

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ctx1: work on registers;
Ctx1: work on registers;
Ctx1: work on registers;
Ctx1: load request, switch context;✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ctx3: work on registers;
Ctx3: work on registers;
Ctx3: work on registers;
Ctx3: load request, switch context;

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ctx2: work on registers;
Ctx2: work on registers;
Ctx2: work on registers;
Ctx2: load request, switch context;

Ctx1: load done so continue

Summary: CPUs and GPUs have
fundamentally different design

DRAM

Co
Ca A A A A A A A A A A A A A A A A

Streaming Multiprocessor

Cache

ALU
Control

ALU

ALU

ALU

DRAM

Single CPU core Multiple GPU processors

GPU = Graphics Processing Unit

GPUs are provided to accelerate graphics, but they can also be used
for non-graphics applications that exhibit large amounts of data
parallelism and require large amounts of “streaming” throughput
⇒ SIMD parallelism within an SM, and SPMD parallelism across SMs

15 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Host vs. Device

16 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

GPU (a
ka

 dev
ice

)

CPU (a
ka host)

Host vs. Device
• The GPU has its own independent memory space.

• The GPU brick is a separate compute sidecar.

• We refer to:
— the GPU as a “DEVICE”
— the CPU as the “HOST”

• An array that is in HOST-attached memory is not directly visible to the
DEVICE, and vice versa.

• To load data onto the DEVICE from the HOST:
— We allocate memory on the DEVICE for the array
— We then copy data from the HOST array to the DEVICE array

• To retrieve results from the DEVICE they have to be copied from the
DEVICE array to the HOST array.

17 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Execution of a CUDA program
Host Code

(small number of threads)

. . .

. . .

Device Kernel
(large number of threads)

Host Code
(small number of threads)

Device Kernel
(large number of threads)

Host Code
(small number of threads)

18 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Explicit host-device communication

Explicit host-device communication

Explicit host-device communication

Explicit host-device communication

 Outline of a CUDA main program

Body Level Five

19 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

pseudo_cuda_code.cu: 

__global__ void kernel(arguments) {

 instructions for a single GPU thread;
}

...

main(){

set up GPU arrays;

copy CPU data to GPU;

kernel <<< # thread blocks, # threads per block >>> (arguments);

copy GPU data to CPU;

}

CUDA Storage Classes + Thread
Hierarchy

• Local Memory: per-thread
— Private per thread
— Auto variables, register spill

• Shared Memory: per-Block
— Shared by threads of the same block
— Inter-thread communication

• Global Memory: per-application
— Shared by all threads
— Inter-Grid communication

Thread

Local Memory

Grid 0

. . .

Global
Memory

. . .

Grid 1
Sequential
Grids
in Time

Block

Shared
Memory

20 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Matrix multiplication kernel code in
CUDA --- SPMD model with 2D index

Body Level Five

21 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Host Code in C for Matrix Multiplication
1. void MatrixMultiplication(float* M, float* N, float* P, int Width)

{
2. int size = Width*Width*sizeof(float); // matrix size
3. float* Md, Nd, Pd; // pointers to device arrays
4. cudaMalloc((void**)&Md, size); // allocate Md on device
5. cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice); // copy M to Md
6. cudaMalloc((void**)&Nd, size); // allocate Nd on device
7. cudaMemcpy(Nd, M, size, cudaMemcpyHostToDevice); // copy N to Nd
8. cudaMalloc((void**)&Pd, size); // allocate Pd on device
9. dim3 dimBlock(Width,Width); dim3 dimGrid(1,1);
10. // launch kernel (equivalent to “async at(GPU), forall, forall”
11. MatrixMulKernel<<<dimGrid,dimBlock>>>(Md, Nd, Pd, Width);
12. cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost); // copy Pd to P
13. // Free device matrices
14. cudaFree(Md); cudaFree(Nd); cudaFree(Pd);
15. }

22 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

CUDA Host-Device Data Transfer
• cudaError_t cudaMemcpy(void* dst, const

void* src, size_t count, enum
cudaMemcpyKind kind)

• copies count bytes from the memory area
pointed to by src to the memory area
pointed to by dst, where kind is one of
— cudaMemcpyHostToHost
— cudaMemcpyHostToDevice
— cudaMemcpyDeviceToHost
— cudaMemcpyDeviceToDevice

• The memory areas may not overlap

• Calling cudaMemcpy() with dst and src
pointers that do not match the direction of
the copy results in an undefined behavior.

(Device) Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Mem
ory

Thread
(0, 0)

Regist

Local
Mem
ory

Thread
(1, 0)

Regist

Block (1, 0)

Shared Memory

Local
Mem
ory

Thread
(0, 0)

Regist

Local
Mem
ory

Thread
(1, 0)

Regist

Host

23 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

CUDA construct Related HJ/Java constructs

Kernel invocation,
<<<. . .>>>

async at(gpu-place)

1D/2D grid with 1D/2D/3D
blocks of threads

Outer 1D/2D forall with inner 1D/2D/3D forall

Intra-block barrier,
__syncthreads()

HJ forall-next on implicit phaser for inner forall

cudaMemcpy() No direct equivalent in HJ/Java (can use
System.arraycopy() if needed)

Storage classes: local,
shared, global

No direct equivalent in HJ/Java (method-local
variables are scalars)

Summary of key features in CUDA

24 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

25

Worksheet #35: Branching in SIMD code

COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Consider SIMD execution of the following pseudocode with 8 threads.
Assume that each call to doWork(x) takes x units of time, and ignore
all other costs. How long will this program take when executed on 8
GPU cores, taking into consideration the branching issues discussed
in Slide 9?

1. int tx = threadIdx.x; // ranges from 0 to 7
2. if (tx % 2 = 0) {
3. S1: doWork(1); // Computation S1 takes 1 unit of time
4. }
5. else {
6. S2: doWork(2); // Computation S2 takes 2 units of time
7. }

Name: ___________________ Netid: ___________________

BACKUP SLIDES START HERE

26 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

HJ abstraction of a CUDA kernel
invocation: async at + forall + forall 

async at(GPU)

async at(GPU)

forall(blockIdx)

forall(threadIdx)

27 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

