
COMP 322 Spring 2017

Homework 2: due by 11:59pm on Wednesday, February 8, 2017

(Total: 100 points)
Instructor: Vivek Sarkar, Co-Instructor: Mackale Joyner.

All homeworks should be submitted through the Autograder introduced in Lab 1, and also com-
mitted in the svn repository at https://svn.rice.edu/r/comp322/turnin/S17/your-netid/hw 2

that we will create for you. In case of problems committing your files, please contact the
teaching staff at comp322-staff@mailman.rice.edu before the deadline to get help resolving for
your issues.

Your solution to the written assignment should be submitted as a PDF file named hw 2 written.pdf

in the hw 2 directory. This is important — you will be penalized 10 points if you place the
file in some other folder or with some other name. The PDF file can be created however
you choose. If you scan handwritten text, make sure that the writing is clearly legible in
the scanned copy. Your solution to the programming assignment should be submitted in the
appropriate location in the hw 2 directory.

The slip day policy for COMP 322 is similar to that of COMP 321. All students will be
given 3 slip days to use throughout the semester. When you use a slip day, you will receive
up to 24 additional hours to complete the assignment. You may use these slip days in any
way you see fit (3 days on one assignment, 1 day each on 3 assignments, etc.). Slip days
will be automatically tracked through the Autograder, more details are available later in this
document and in the Autograder user guide.

Other than slip days, no extensions will be given unless there are exceptional circumstances
(such as severe sickness, not because you have too much other work). Such extensions must
be requested and approved by the instructor (via e-mail, phone, or in person) before the due
date for the assignment. Last minute requests are likely to be denied.

If you see an ambiguity or inconsistency in a question, please seek a clarification on Piazza
(remember not to share homework solutions in public posts) or from the teaching staff. If it
is not resolved through those channels, you should state the ambiguity/inconsistency that you
see, as well as any assumptions that you make to resolve it.

Honor Code Policy: All submitted homeworks are expected to be the result of your individual effort. You
are free to discuss course material and approaches to problems with your other classmates, the teaching
assistants and the professor, but you should never misrepresent someone else’s work as your own. If you use
any material from external sources, you must provide proper attribution.

1 Written Assignments (50 points total)

Submit your solutions to the written assignments as a PDF file named hw 2 written.pdf in the hw 2 di-
rectory. Please note that you be penalized 10 points if you misplace the file in some other folder or if you
submit the report in some other format.

1.1 Parallel Fibonacci using Futures (25 points)

Consider the HJlib code shown below in Listing 1 to compute the Fibonacci function in parallel using futures.
(Note that this parallel algorithm is based on a highly inefficient sequential algorithm because it does not
use memoization or dynamic programming; however, we will use this version for simplicity.)

1. Perform a big-O analysis for the total work performed by a call to fib(n). Include an explanation of
the analysis, and state what expression you get for WORK(n) as a function of n. (15 points)

1 of 4

comp322-staff@mailman.rice.edu

COMP 322
Spring 2017

Homework 2: due by 11:59pm on Wednesday, February 8, 2017

(Total: 100 points)

Hint: The closed form for Fibonacci number Fibi = (φi − φ̂i)/
√

5, where φ = 1+
√
5

2 and φ̂ = 1−
√
5

2
(i.e., the two roots of the equation x2 = x+ 1).

2. Perform a big-O analysis for the critical path length for a call to fib(n). Include an explanation of the
analysis, and state what expression you get for CPL(n) as a function of n. (10 points)

1 public stat ic int f i b (int n) throws SuspendableException {
2 i f (n <= 0) return 0 ;
3 else i f (n == 1) return 1 ;
4
5 HjFuture<Integer> f 1 = fu tu r e (() −> f i b (n − 1)) ;
6 HjFuture<Integer> f 2 = fu tu r e (() −> f i b (n − 2)) ;
7
8 In t eg e r f1Val = f1 . get () ;
9 In t eg e r f2Val = f2 . get () ;

10 doWork (1) ; // only count add i t i on in ab s t r a c t metr i c s
11 return f1Val + f2Val ;
12 }

Listing 1: Parallel Fibonacci using Futures

Hints based on common errors from past years: Note that an empirical analysis of WORK and CPL obtained
with different inputs for the code in Listing 1 is not a substitute for a theoretical big-O analysis. Also, pay
attention to where constants matter in a big-O analysis, e.g., O(2n) and O(3n) are not the same. Finally, be
sure to use the big-O notation if your analysis includes big-O approximations; you will not get full credit if
you include a correct big-O answer without the big-O notation (you may choose to provide an exact answer
without big-O notation, however).

1.2 Finish Accumulators (25 points)

Consider the pseudocode shown below in Listing 2 for a Parallel Search algorithm that is intended to compute
O, the number of occurrences of the pattern array in the text array. What possible values can variables
count0, count1, and count2 contain at line 16? Write your answers in terms of M , N , and O, and explain
your answers.

1 // Assume that count0 , count1 , count2 are dec l a r ed
2 // as ob j e c t / s t a t i c f i e l d s o f type i n t
3 . . .
4 count0 = 0 ;
5 accumulator a = new accumulator (SUM, int . class) ;
6 f in ish (a) {
7 for (int i = 0 ; i <= N − M; i++)
8 async {
9 int j ;

10 for (j = 0 ; j < M; j++) i f (t ex t [i+j] != pattern [j]) break ;
11 i f (j == M) { count0++; a .put (1) ; } // found at o f f s e t i
12 count1 = a . get () . intValue () ;
13 } // for−async
14 } // f i n i s h
15 count2 = a . get () . intValue () ;
16 // Pr int count0 , count1 , count2

Listing 2: Parallel Search using Finish Accumulators

Hints based on common errors from past years: Be sure to include exactly all possible values for the variables,
not a subset or superset of the values. Remember to use O in your answers, even though O can have different

2 of 4

COMP 322
Spring 2017

Homework 2: due by 11:59pm on Wednesday, February 8, 2017

(Total: 100 points)

values for different values of the text[] and pattern[] arrays (even for the same values of M and N , and
note that O has nothing to do with big-O analysis!) Finally, don’t forget to explain your answers.

2 Programming Assignment (50 points)

2.1 Setup

See the Lab 1 handout for instructions on HJlib installation for use in this homework, and Lecture 3 for
information on abstract execution metrics. The provided code for HW 2 can be found in your SVN repository
at https://svn.rice.edu/r/comp322/turnin/S17/your-netid/hw 2.

2.2 Abstract Overhead

Thus far, our abstract metrics have assumed an idealized execution in which there is no overhead in creating
async or future tasks. In the real world, asyncs are not actually free: they consume processor cycles and
system memory. In this homework, we will simulate that cost using abstract metrics, and try to implement
a parallel algorithm in such a way as to obtain the best CPL value when taking abstract overheads into
account.

In an effort to make abstract metrics a bit more realistic, we will add an abstract overhead for the program-
ming assignment in Homework 2. The idea behind abstract overhead is to charge a certain cost, C, to a
parent task whenever it creates a child task. This cost will be added as sequential work to the parent just
before the child task is created. For example, if a task creates N async child tasks, it will incur an overhead
of N × C units of work which will be added to other work that the task is doing.

2.3 Parallel Matrix Multiply with Abstract Overhead (50 points)

The goal of this assignment is to implement a parallel matrix multiply program with the smallest critical
path length, when taking abstract async overhead into account. If you need to brush up on matrix-matrix
multiplies, see the sample code in Worksheet 1 Question 2 or https://www.mathsisfun.com/algebra/

matrix-multiplying.html. Your solution should work for matrices of all sizes (within the limits of the
memory capacity of your machine), but you will be graded by multiplying two N ×N matrices for N = 1024
with an abstract async overhead cost of C = N = 1024. The abstract metrics should count one unit
of work for each multiply operation, and assume that all other operations (other than the abstract async
overhead) are free. When C = N , we expect the best solution to have a critical path length of approximately
N × (2× log2(N) + 1).

Make sure to add calls to doWork(1) for each multiply operation performed as part of your matrix-matrix
multiply implementation. If you do not, your results will be misleading.

We have provided a basic template of a Matrix class which can be multiplied by another matrix class.
Matrix includes sample sequential and parallel implementations of matrix-matrix multiply. Note that the
CPL of the parallel implementation is much higher than the best solution of N × (2× log2(N) + 1).

You should complete the optimizedParallelMultiply method, with the goal of minimizing the CPL of
your matrix-matrix multiply solution for N = C = 1024. You are free to add any tests or other code you
like under the main/ and test/ directories, but please do not modify the folder structure of the project.

A correct parallel program should generate the same output as the sequential version, and should not
exhibit any data races. The parallelism in your solution should be expressed using only async, finish,
and/or future constructs. It should pass the unit tests provided, and other tests that the teaching staff will
use while grading.

2.4 Submitting

As with HW 1, assignment submission will be done through the autograder. If you have not done so already,
please read the COMP 322 Autograder Guide, which details how homework submissions are made through

3 of 4

https://www.mathsisfun.com/algebra/matrix-multiplying.html
https://www.mathsisfun.com/algebra/matrix-multiplying.html
https://wiki.rice.edu/confluence/display/PARPROG/Autograder+Guide

COMP 322
Spring 2017

Homework 2: due by 11:59pm on Wednesday, February 8, 2017

(Total: 100 points)

the Autograder.

Testing homeworks in the Autograder requires the same process as testing labs. You may upload your
working solution as many times as you like using either a ZIP or through your hw 2 SVN folder, and the
Autograder will automatically verify the correctness and style of your solution for the programming portion.
The written portion will of course be manually graded by the teaching staff.

For this homework, you need to ensure that an Autograder run has been marked as your fi-
nal submission prior to the homework deadline, and also committed in the svn repository at
https://svn.rice.edu/r/comp322/turnin/S17/your-netid/hw 2. The teaching staff will use the results
of that Autograder run and the files submitted with it (source code, report, and written portions) to grade
your assignment. The copy in svn will ensure that we have a backup copy of your submission for safekeeping.

Your submission should include the following in the hw 2 directory:

1. (25 points) Your completed solution to the parallel matrix multiply problem, that attempts to minimize
CPL in the presence of an abstract overhead implemented in the Matrix.optimizedParallelMultiply
method. We will only evaluate the performance of your solution using abstract metrics, and not its
actual execution time.

15 points will be allocated based on the ideal parallelism that you achieve and the correctness of your
implementation. You will get the full 15 points if you achieve a CPL of N× (2× log2(N)+1) or better,
when the abstract overhead is C = N .

10 points will be allocated for coding style and documentation. At a minimum, all code should include
basic documentation for each method in each class. You are also welcome to add additional unit tests
to test corner cases and ensure the correctness of your implementations.

2. (15 points) A report file formatted as a PDF file named hw 2 report.pdf in the hw 2 directory. The
report should contain the following:

(a) A summary of your parallel algorithm, and the steps that you had to take to minimize CPL in
the presence of abstract overehad.

(b) An explanation as to why you believe that your implementation is correct and data-race-free.

(c) An explanation of what value of CPL (as a function of N) you expect to see from your implemen-
tation, and why.

Hints based on common errors/omissions from past years: Be sure to explain what parallel constructs
you used, why, and what subcomputations ran in parallel as a result. Also, justify why you believe
that your parallel solution will always produce the same output as the sequential version. In addition,
you should explain why there are no data races in your solution. Finally remember to explain what
value of CPL (as a function of N) you expect to see from your implementation, and why.

3. (10 points) The report file should also include test output for the CPL value obtained for matrix
multiply with N = C = 1024 as inputs. Also, include the IDEAL PARALLELISM (= N3/CPL) value
obtained from your CPL value. Note that N3 is included in the numerator, since that is the total
useful work (excluding abstract overhead).

4 of 4

	Written Assignments (50 points total)
	Parallel Fibonacci using Futures (25 points)
	Finish Accumulators (25 points)

	Programming Assignment (50 points)
	Setup
	Abstract Overhead
	Parallel Matrix Multiply with Abstract Overhead (50 points)
	Submitting

