COMP 322: Fundamentals of Parallel Programming

Lecture 3: Multiprocessor Scheduling

Instructors: Vivek Sarkar, Mack Joyner
Department of Computer Science, Rice University
{vsarkar, mjoyner}@rice.edu

http://comp322.rice.edu
One Possible Solution to Worksheet 2
(Reverse Engineering a Computation Graph)

Observations:
- Any node with out-degree > 1 must be an async (must have an outgoing spawn edge)
- Any node with in-degree > 1 must be an end-finish (must have an incoming join edge)
- Adding or removing transitive edges does not impact ordering constraints

```
1. A();
2. finish { // F1
3.   async D();
4.   B();
5.   async {
6.     E();
7.     finish { // F2
8.       async H();
9.       F();
10.   } // F2
11.   G();
12. }
13. } // F1
14. C();
```
Ordering Constraints and Transitive Edges in a Computation Graph

• The primary purpose of a computation graph is to determine if an ordering constraint exists between two steps (nodes)
 — Observation: Node A must be performed before node B if there is a path of directed edges from A and B

• An edge, \(X \rightarrow Y \), in a computation graph is said to be *transitive* if there exists a path of directed edges from X to Y that does not include the \(X \rightarrow Y \) edge
 — Observation: Adding or removing a transitive edge does not change the ordering constraints in a computation graph
Ideal Parallelism (Recap)

- Define **ideal parallelism** of Computation Graph G as the ratio, $\frac{\text{WORK}(G)}{\text{CPL}(G)}$

- Ideal Parallelism only depends on the computation graph, and is the speedup that you can obtain with an unbounded number of processors

Example:

$\text{WORK}(G) = 26$

$\text{CPL}(G) = 11$

Ideal Parallelism $= \frac{\text{WORK}(G)}{\text{CPL}(G)} = \frac{26}{11} \approx 2.36$
What is the critical path length of this parallel computation?

1. finish { // F1
2. async A; // Boil water & pasta (20)
3. finish { // F2
4. async B1; // Chop veggies (5)
5. async B2; // Brown meat (10)
6. } // F2
7. B3; // Make pasta sauce (5)
8. } // F1
Computation Graphs are used in Project Scheduling as well

- Computation graphs are referred to as “Gantt charts” in project management
- Sample project for preparing a printed document
Scheduling of a Computation Graph on a fixed number of processors: Example

- Node label = time(N), for all nodes N in the graph.

Diagram and Table:

```
<table>
<thead>
<tr>
<th>Start time</th>
<th>Proc 1</th>
<th>Proc 2</th>
<th>Proc 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>N</td>
<td>I</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>N</td>
<td>J</td>
</tr>
<tr>
<td>5</td>
<td>D</td>
<td>N</td>
<td>K</td>
</tr>
<tr>
<td>6</td>
<td>D</td>
<td>Q</td>
<td>L</td>
</tr>
<tr>
<td>7</td>
<td>E</td>
<td>R</td>
<td>M</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>R</td>
<td>O</td>
</tr>
<tr>
<td>9</td>
<td>G</td>
<td>R</td>
<td>P</td>
</tr>
<tr>
<td>10</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

NOTE: This schedule achieved a completion time of 11. Can we do better?
Scheduling of a Computation Graph on a fixed number of processors, P

- Assume that node N takes $\text{TIME}(N)$ regardless of which processor it executes on, and that there is no overhead for creating parallel tasks.

- A schedule specifies the following for each node:
 - $\text{START}(N) =$ start time
 - $\text{PROC}(N) =$ index of processor in range $1 \ldots P$

such that

 - $\text{START}(i) + \text{TIME}(i) \leq \text{START}(j)$, for all CG edges from i to j (Precedence constraint)

 - A node occupies consecutive time slots in a processor (Non-preemption constraint)

 - All nodes assigned to the same processor occupy distinct time slots (Resource constraint)
Greedy Schedule

• A greedy schedule is one that never forces a processor to be idle when one or more nodes are ready for execution
• A node is ready for execution if all its predecessors have been executed
• Observations
 — $T_1 = WORK(G)$, for all greedy schedules
 — $T_\infty = CPL(G)$, for all greedy schedules
• where $T_p(S) =$ execution time of schedule S for computation graph G on P processors
Lower Bounds on Execution Time of Schedules

- Let T_P = execution time of a schedule for computation graph G on P processors
 - T_P can be different for different schedules, for same values of G and P

- Lower bounds for all greedy schedules
 - Capacity bound: $T_P \geq \frac{\text{WORK}(G)}{P}$
 - Critical path bound: $T_P \geq \text{CPL}(G)$

- Putting them together
 - $T_P \geq \max(\frac{\text{WORK}(G)}{P}, \text{CPL}(G))$
Upper Bound on Execution Time of Greedy Schedules

Theorem [Graham '66]. Any greedy scheduler achieves
\[T_p \leq \frac{\text{WORK}(G)}{P} + \text{CPL}(G) \]

Proof sketch:
Define a time step to be complete if \(P \) nodes are scheduled at that time, or incomplete otherwise.

\# complete time steps \(\leq \frac{\text{WORK}(G)}{P} \)

\# incomplete time steps \(\leq \text{CPL}(G) \)
Bounding the performance of Greedy Schedulers

Combine lower and upper bounds to get

\[\max(\frac{\text{WORK}(G)}{P}, \text{CPL}(G)) \leq T_P \leq \frac{\text{WORK}(G)}{P} + \text{CPL}(G) \]

Corollary 1: Any greedy scheduler achieves execution time \(T_P \) that is within a factor of 2 of the optimal time (since \(\max(a,b) \) and \((a+b) \) are within a factor of 2 of each other, for any \(a \geq 0, b \geq 0 \)).

Corollary 2: Lower and upper bounds approach the same value whenever

- There’s lots of parallelism, \(\frac{\text{WORK}(G)}{\text{CPL}(G)} \gg P \)
- Or there’s little parallelism, \(\frac{\text{WORK}(G)}{\text{CPL}(G)} \ll P \)
Abstract Performance Metrics (Lab 1)

- **Basic Idea**
 - Count operations of interest, as in big-O analysis, to evaluate parallel algorithms
 - Abstraction ignores many overheads that occur on real systems

- **Calls to doWork()**
 - Programmer inserts calls of the form, \texttt{doWork(N)}, within a step to indicate abstraction execution of \(N\) application-specific abstract operation
 - e.g., in the Homework 1 programming assignment (Parallel Sort), we will include one call to \texttt{doWork(1)} in each call to \texttt{compareTo()}, and ignore the cost of everything else

- Abstract metrics are enabled by calling \texttt{HjSystemProperty.abstractMetrics.set(true)} at start of program execution

- If an HJ program is executed with this option, abstract metrics can be printed at end of program execution with calls to \texttt{abstractMetrics().totalWork()}, \texttt{abstractMetrics().criticalPathLength()}, and \texttt{abstractMetrics().idealParallelism()}
Announcements & Reminders

• IMPORTANT:
 —Watch video & read handout for topic 1.5 for next lecture on Wednesday, Jan 18th

• HW1 was posted on the course web site (http://comp322.rice.edu) on Jan 11th, and is due on Jan 25th

• Quiz for Unit 1 (topics 1.1 - 1.5) is due by Jan 27th on Canvas

• See course web site for all work assignments and due dates

• Use Piazza (public or private posts, as appropriate) for all communications re. COMP 322

• See Office Hours link on course web site for latest office hours schedule. Group office hours are now scheduled during 3pm - 4pm on MWF in DH 3092 (default room but alternate room may need to be used on some days — an announcement will be made in the lecture on those days)