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Worksheet #7 solution:  
Associativity and Commutativity

Recap: 
A binary function f is associative if f(f(x,y),z) = f(x,f(y,z)). 
A binary function f is commutative if f(x,y) = f(y,x). 

Worksheet problems: 
1) Claim: a Finish Accumulator (FA) can only be used with operators that are 
associative and commutative.  Why?  What can go wrong with accumulators if 
the operator is non-associative or non-commutative? 
You may get different answers in different executions if the operator is non-
associative or non-commutative e.g., an accumulator can be implemented using 
one “partial accumulator” per processor core. 
2) For each of the following functions, indicate if it is associative and/or 
commutative. 
a) f(x,y) = x+y, for integers x, y, is associative and commutative 
b) g(x,y) = (x+y)/2, for integers x, y, is commutative but not associative 
⇒ Incorrect answers found in some worksheets: Associative / Both / Neither 
c) h(s1,s2) = concat(s1, s2) for strings s1, s2, e.g., h(“ab”,”cd”) = “abcd”, is 
associative but not commutative 
⇒ Incorrect answers found in some worksheets: Commutative / Neither
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Streaming data requirements have 
skyrocketed

• AT&T processes roughly 30 petabytes per day through its 
telecommunications network  

• Google processed roughly 24 petabytes per day in 2009 

• Facebook, Amazon, Twitter, etc, have comparable throughputs 

• Two Sigma maintains over 100 teraflops of private computing 
power, continuously computing over 11 petabytes of quantitative 
data 

• In comparison, the IBM Watson knowledge base stored roughly 4 
terabytes of data when winning at Jeopardy
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Parallelism enables processing of big data

• Continuously streaming data needs to be processed at least as fast 
as it is accumulated, or we will never catch up 

• The bottleneck in processing very large data sets is dominated by 
the speed of disk access 

• More processors accessing more disks enables faster processing
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Parallelism enables “Cloud Computing” 
as a Utility

• Offers computing, storage, communication at pennies per hour  
• Leverage Parallelism to Achieve Energy-Efficient High Performance 

• No premium to scale: 
      1000 computers @       1 hour  

=       1 computer   @ 1000 hours 
• Illusion of infinite scalability to cloud user 

• As many computers as you can afford 
• Leading examples: Amazon Web Services (AWS), Google App Engine, Microsoft Azure 

• Economies of scale pushed down datacenter costs by factors of 3-8X 
• Traditional data centers utilized 10% - 20% 
• Make profit offering pay-as-you-go use service at less than your costs for as many 

computers as you need 
• Strategic capability for company’s needs 

• Challenge: portable and scalable parallelism at cloud scale 
• One solution: leverage functional programming with MapReduce pattern

5

COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

MapReduce Pattern

• Apply Map function f to user supplied record of key-
value pairs 

• Compute set of intermediate key/value pairs 
• Apply Reduce operation g to all values that share 

same key to combine derived data properly 
—Often produces smaller set of values 

• User supplies Map and Reduce operations in 
functional model so that the system can parallelize 
them, and also re-execute them for fault tolerance
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MapReduce: The Map Step
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MapReduce: The Reduce Step
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Map Reduce: Summary

• Input set is of the form {(k1, v1), . . . (kn, vn)}, where (ki, vi) 
consists of a key, ki, and a value, vi.  
• Assume that the key and value objects are immutable, and 

that equality comparison is well defined on all key objects. 
• Map function f generates sets of intermediate key-value pairs,  

f(ki,vi) = {(k1′ ,v1′),...(km′,vm′)}.  The kj′ keys can be different 
from ki key in the in of the map function. 
• Assume that a flatten operation is performed as a post-

pass after the map operations, so as to avoid dealing with a 
set of sets. 

• Reduce operation groups together intermediate key-value 
pairs, {(k′, vj′)} with the same k’, and generates a reduced key-
value pair, (k′,v′′), for each such k’, using reduce function g
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Google Uses MapReduce For …
• Web crawl: Find outgoing links from HTML documents, 

aggregate by target document 
• Google Search: Generating inverted index files using a 

compression scheme 
• Google Earth: Stitching overlapping satellite images to 

remove seams and to select high-quality imagery 
• Google Maps: Processing all road segments on Earth and 

render map tile images that display segments 
• More than 10,000 MR programs at Google in 4 years, run 

100,000 MR jobs per day (2008)
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MapReduce: State of Practice

• Apache Hadoop now dominates use of the MapReduce 
framework 

• Often, Hadoop map and reduce functions are no longer 
written directly 
• Instead, a user writes a query in a very high level language 

and uses another tool to compile the query into map/reduce 
functions! 
• Hive (another Apache project) compiles SQL queries 

into map/reduce 
• Pig (yet another Apache project) compiles direct 

relational algebra into map/reduce
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MapReduce: State of Practice

• Eventually, users started realizing that a much larger class of 
algorithms could be expressed as an iterative sequence of map/
reduce operations 
• Many machine learning algorithms fall into this category 

• Tools started to emerge to enable easy expression of multiple map/
reduce operations, along with smart scheduling 

• Apache Spark: General purpose functional programming over a 
cluster 
• Caches results of map/reduce operations in memory so they can 

be used on subsequent iterations without accessing disk each 
time 

• Tends to be 10-100 times faster than Hadoop for many applications
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MapReduce Execution

Fine granularity 
tasks: many more 
map tasks than 
machines

2000 servers =>  
≈ 200,000 Map Tasks, ≈ 
5,000 Reduce tasks

Bucket sort 
to get same keys 
together
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WordCount example
In: set of words 
Out: set of (word,count) pairs 
Algorithm: 
1. For each in word W, emit (W, 1) as a key-value pair (map step). 
2. Group together all key-value pairs with the same key (reduce step). 
3. Perform a sum reduction on all values with the same key(reduce step). 

• All map operations in step 1 can execute in parallel with only local data 
accesses 

• Step 2 may involve a major reshuffle of data as all key-value pairs with 
the same key are grouped together. 

• Step 3 performs a standard reduction algorithm for all values with the 
same key, and in parallel for different keys.
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PseudoCode for WordCount
1.  <String, Integer> map(String inKey, String inValue): 
2.    // inKey: document name 
3.    // inValue: document contents 
4.    for each word w in inValue: 
5.      emitIntermediate(w, 1) // Produce count of words 
6. 

7.  <Integer> reduce(String outKey, Iterator<Integer> values): 
8.    // outKey: a word 
9.    // values: a list of counts 
10.    Integer result = 0 
11.    for each v in values: 
12.      result += v // the value from map was an integer 
13.    emit(result)
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Example Execution of WordCount Program

that that is is that that is not is not is that it it is

is 1, that 2 is 1, that 2 is 2, not 2 is 2, it 2, that 1
Map 1 Map 2 Map 3 Map 4

Reduce 1 Reduce 2
is 6; it 2 not 2; that 5

Shuffle

Collect

is 6; it 2; not 2; that 5 

Distribute

that 2,2,1 
not 2

is 1,1,2,2 
it 2 
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