
COMP 322: Fundamentals of
Parallel Programming

Lecture 8: Map Reduce

Instructors: Vivek Sarkar, Mack Joyner
Department of Computer Science, Rice University

{vsarkar, mjoyner}@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 8 27 January 2017

COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Worksheet #7 solution:
Associativity and Commutativity

Recap:
A binary function f is associative if f(f(x,y),z) = f(x,f(y,z)).
A binary function f is commutative if f(x,y) = f(y,x).

Worksheet problems:
1) Claim: a Finish Accumulator (FA) can only be used with operators that are
associative and commutative. Why? What can go wrong with accumulators if
the operator is non-associative or non-commutative?
You may get different answers in different executions if the operator is non-
associative or non-commutative e.g., an accumulator can be implemented using
one “partial accumulator” per processor core.
2) For each of the following functions, indicate if it is associative and/or
commutative.
a) f(x,y) = x+y, for integers x, y, is associative and commutative
b) g(x,y) = (x+y)/2, for integers x, y, is commutative but not associative
⇒ Incorrect answers found in some worksheets: Associative / Both / Neither
c) h(s1,s2) = concat(s1, s2) for strings s1, s2, e.g., h(“ab”,”cd”) = “abcd”, is
associative but not commutative
⇒ Incorrect answers found in some worksheets: Commutative / Neither

2

COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Streaming data requirements have
skyrocketed

• AT&T processes roughly 30 petabytes per day through its
telecommunications network

• Google processed roughly 24 petabytes per day in 2009

• Facebook, Amazon, Twitter, etc, have comparable throughputs

• Two Sigma maintains over 100 teraflops of private computing
power, continuously computing over 11 petabytes of quantitative
data

• In comparison, the IBM Watson knowledge base stored roughly 4
terabytes of data when winning at Jeopardy

3

COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Parallelism enables processing of big data

• Continuously streaming data needs to be processed at least as fast
as it is accumulated, or we will never catch up

• The bottleneck in processing very large data sets is dominated by
the speed of disk access

• More processors accessing more disks enables faster processing

4

COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Parallelism enables “Cloud Computing”
as a Utility

• Offers computing, storage, communication at pennies per hour
• Leverage Parallelism to Achieve Energy-Efficient High Performance

• No premium to scale:
 1000 computers @ 1 hour  

= 1 computer @ 1000 hours
• Illusion of infinite scalability to cloud user

• As many computers as you can afford
• Leading examples: Amazon Web Services (AWS), Google App Engine, Microsoft Azure

• Economies of scale pushed down datacenter costs by factors of 3-8X
• Traditional data centers utilized 10% - 20%
• Make profit offering pay-as-you-go use service at less than your costs for as many

computers as you need
• Strategic capability for company’s needs

• Challenge: portable and scalable parallelism at cloud scale
• One solution: leverage functional programming with MapReduce pattern

5

COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

MapReduce Pattern

• Apply Map function f to user supplied record of key-
value pairs

• Compute set of intermediate key/value pairs
• Apply Reduce operation g to all values that share

same key to combine derived data properly
—Often produces smaller set of values

• User supplies Map and Reduce operations in
functional model so that the system can parallelize
them, and also re-execute them for fault tolerance

6

COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

MapReduce: The Map Step

vk

k' v'

k' v'
map

vk

vk

…
k' v'

map

Input set of
key-value pairs

Flattened intermediate
set of key-value pairs

…

k' v'map

Source: http://infolab.stanford.edu/~ullman/mining/2009/mapreduce.ppt

7

COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

MapReduce: The Reduce Step

k' v'

…

k' v'

k' v'

k' v'

Intermediate
key-value pairs

group

reduce

reduce
k' v''

v''

v''

…

k' v'

…

k' v'

k' v' v'

v' v'

Key-value groups
Output
key-value pairs

k'

k'

Source: http://infolab.stanford.edu/~ullman/mining/2009/mapreduce.ppt

8

COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Map Reduce: Summary

• Input set is of the form {(k1, v1), . . . (kn, vn)}, where (ki, vi)
consists of a key, ki, and a value, vi.
• Assume that the key and value objects are immutable, and

that equality comparison is well defined on all key objects.
• Map function f generates sets of intermediate key-value pairs,

f(ki,vi) = {(k1′ ,v1′),...(km′,vm′)}. The kj′ keys can be different
from ki key in the in of the map function.
• Assume that a flatten operation is performed as a post-

pass after the map operations, so as to avoid dealing with a
set of sets.

• Reduce operation groups together intermediate key-value
pairs, {(k′, vj′)} with the same k’, and generates a reduced key-
value pair, (k′,v′′), for each such k’, using reduce function g

9

COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Google Uses MapReduce For …
• Web crawl: Find outgoing links from HTML documents,

aggregate by target document
• Google Search: Generating inverted index files using a

compression scheme
• Google Earth: Stitching overlapping satellite images to

remove seams and to select high-quality imagery
• Google Maps: Processing all road segments on Earth and

render map tile images that display segments
• More than 10,000 MR programs at Google in 4 years, run

100,000 MR jobs per day (2008)

10

COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

MapReduce: State of Practice

• Apache Hadoop now dominates use of the MapReduce
framework

• Often, Hadoop map and reduce functions are no longer
written directly
• Instead, a user writes a query in a very high level language

and uses another tool to compile the query into map/reduce
functions!
• Hive (another Apache project) compiles SQL queries

into map/reduce
• Pig (yet another Apache project) compiles direct

relational algebra into map/reduce

11

COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

MapReduce: State of Practice

• Eventually, users started realizing that a much larger class of
algorithms could be expressed as an iterative sequence of map/
reduce operations
• Many machine learning algorithms fall into this category

• Tools started to emerge to enable easy expression of multiple map/
reduce operations, along with smart scheduling

• Apache Spark: General purpose functional programming over a
cluster
• Caches results of map/reduce operations in memory so they can

be used on subsequent iterations without accessing disk each
time

• Tends to be 10-100 times faster than Hadoop for many applications

12

COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

MapReduce Execution

Fine granularity
tasks: many more
map tasks than
machines

2000 servers =>  
≈ 200,000 Map Tasks, ≈
5,000 Reduce tasks

Bucket sort
to get same keys
together

13

COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

WordCount example
In: set of words
Out: set of (word,count) pairs
Algorithm:
1. For each in word W, emit (W, 1) as a key-value pair (map step).
2. Group together all key-value pairs with the same key (reduce step).
3. Perform a sum reduction on all values with the same key(reduce step).

• All map operations in step 1 can execute in parallel with only local data
accesses

• Step 2 may involve a major reshuffle of data as all key-value pairs with
the same key are grouped together.

• Step 3 performs a standard reduction algorithm for all values with the
same key, and in parallel for different keys.

14

COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

PseudoCode for WordCount
1. <String, Integer> map(String inKey, String inValue):
2. // inKey: document name
3. // inValue: document contents
4. for each word w in inValue:
5. emitIntermediate(w, 1) // Produce count of words
6.

7. <Integer> reduce(String outKey, Iterator<Integer> values):
8. // outKey: a word
9. // values: a list of counts
10. Integer result = 0
11. for each v in values:
12. result += v // the value from map was an integer
13. emit(result)

15

COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Example Execution of WordCount Program

that that is is that that is not is not is that it it is

is 1, that 2 is 1, that 2 is 2, not 2 is 2, it 2, that 1
Map 1 Map 2 Map 3 Map 4

Reduce 1 Reduce 2
is 6; it 2 not 2; that 5

Shuffle

Collect

is 6; it 2; not 2; that 5

Distribute

that 2,2,1
not 2

is 1,1,2,2
it 2

16

