
COMP 322: Fundamentals of
Parallel Programming

Lecture 16: Point-to-Point Synchronization
with Phasers Review

COMP 322 Lecture 16 17 February 2017

Instructors: Vivek Sarkar, Mack Joyner
Department of Computer Science, Rice University

{vsarkar, mjoyner}@rice.edu

http://comp322.rice.edu/

 For the example below, will reordering the five async statements change the meaning of the
program (assuming that the semantics of the reader/writer methods depends only on their
parameters)? If so, show two orderings that exhibit different behaviors. If not, explain why not.

 No, reordering the asyncs doesn’t change the meaning of the problem. Regardless of the order,
Task 3 will always wait on Task 1. Task 5 will always wait on Task 2. Task 4 will always wait on
both Task 1 and 2.

1. DataDrivenFuture left = new DataDrivenFuture();
2. DataDrivenFuture right = new DataDrivenFuture();
3. finish {
4. async await(left) leftReader(left); // Task3
5. async await(right) rightReader(right); // Task5
6. async await(left,right)
7. bothReader(left,right); // Task4
8. async left.put(leftWriter()); // Task1
9. async right.put(rightWriter());// Task2
10. }

Name: ___________________ Netid: ___________________

Worksheet 15a: Data Driven Futures
(turn page over for worksheet 15b)

2 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Solution to Worksheet #15b:
Left-Right Neighbor Synchronization using Phasers

COMP 322, Spring 2011 (V.Sarkar)!18

Barrier & P-2-P Sync for 1-D
Averaging!

doPhase1(i)

doPhase2(i)

 i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8

1. finish (() -> {
2. final HjPhaser[] ph =  
 new HjPhaser[m+2]; // array of phaser objects
3. forseq(0, m+1, (i) -> { ph[i] = newPhaser(SIG_WAIT) });
4. forseq(1, m, (i) -> {
5. asyncPhased( 
 ph[i-1].inMode(WAIT),  
 ph[i].inMode(SIG),  
 ph[i+1].inMode(WAIT), () -> {
6. doPhase1(i);
7. next();
8. doPhase2(i); }); // asyncPhased
9. }); // forseq
10.}); // finish

3 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Complete the phased clause below to implement the left-right neighbor
synchronization shown above.

NOTE: Task-to-
phaser mappings can be

many-to-many in general. In
general, it is important to

understand the difference between
computation tasks (async’s) and

synchronization objects
(phasers).

Recap: Phasers: a unified construct for
barrier and point-to-point synchronization

• HJ phasers unify barriers with point-to-point synchronization
—Inspiration for java.util.concurrent.Phaser

• Previous example motivated the need for “point-to-point” synchronization

— With barriers, phase i of a task waits for all tasks associated with the
same barrier to complete phase i-1

— With phasers, phase i of a task can select a subset of tasks to wait for

• Phaser properties
—Support for barrier and point-to-point synchronization
—Support for dynamic parallelism --- the ability for tasks to drop phaser

registrations on termination (end), and for new tasks to add phaser
registrations (async phased)

—A task may be registered on multiple phasers in different modes

4 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Recap: Summary of Phaser Construct
• Phaser allocation

— HjPhaser ph = newPhaser(mode);
– Phaser ph is allocated with registration mode
– Phaser lifetime is limited to scope of Immediately Enclosing Finish (IEF)

• Registration Modes
— HjPhaserMode.SIG, HjPhaserMode.WAIT,  

HjPhaserMode.SIG_WAIT, HjPhaserMode.SIG_WAIT_SINGLE
– NOTE: phaser WAIT is unrelated to Java wait/notify (which we will study later)

• Phaser registration
— asyncPhased (ph1.inMode(<mode1>), ph2.inMode(<mode2>), … () -> <stmt>)

– Spawned task is registered with ph1 in mode1, ph2 in mode2, …
– Child task’s capabilities must be subset of parent’s
– asyncPhased <stmt> propagates all of parent’s phaser registrations to child

• Synchronization
— next();

– Advance each phaser that current task is registered on to its next phase
– Semantics depends on registration mode
– Barrier is a special case of phaser, which is why next is used for both

5 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Recap: Simple Example with Four Async
Tasks and One Phaser

1. finish (() -> {
2. ph = newPhaser(SIG_WAIT); // mode is SIG_WAIT
3. asyncPhased(ph.inMode(SIG), () -> {
4. // A1 (SIG mode)
5. doA1Phase1(); next(); doA1Phase2(); });
6. asyncPhased(ph.inMode(SIG_WAIT), () -> {
7. // A2 (SIG_WAIT mode)
8. doA2Phase1(); next(); doA2Phase2(); });
9. asyncPhased(ph.inMode(HjPhaserMode.SIG_WAIT), () -> {
10. // A3 (SIG_WAIT mode)
11. doA3Phase1(); next(); doA3Phase2(); });
12. asyncPhased(ph.inMode(HjPhaserMode.WAIT), () -> {
13. // A4 (WAIT mode)
14. doA4Phase1(); next(); doA4Phase2(); });
15. });

6 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Recap: Computation Graph Schema Simple
Example with Four Async Tasks and One Phaser

7 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Semantics of next depends on registration mode
SIG_WAIT: next = signal + wait
SIG: next = signal
WAIT: next = wait

signal

wait
next

SIG SIG_WAIT SIG_WAIT WAIT

 A master thread (worker) gathers all signals and broadcasts a barrier completion

Recap: Left-Right Neighbor
Synchronization (with m=3 tasks)

1.finish(() -> { // Task-0
2. final HjPhaser ph1 = newPhaser(SIG_WAIT);
3. final HjPhaser ph2 = newPhaser(SIG_WAIT);
4. final HjPhaser ph3 = newPhaser(SIG_WAIT);
5. asyncPhased(ph1.inMode(SIG),ph2.inMode(WAIT),
6. () -> { doPhase1(1);
7. next(); // signals ph1, waits on ph2
8. doPhase2(1);
9. }); // Task T1
10. asyncPhased(ph2.inMode(SIG),ph1.inMode(WAIT),ph3.inMode(WAIT),
11. () -> { doPhase1(2);
12. next(); // signals ph2, waits on ph3
13. doPhase2(2);
14. }); // Task T2
15. asyncPhased(ph3.inMode(SIG),ph2.inMode(WAIT),
16. () -> { doPhase1(3);
17. next(); // signals ph3, waits on ph2
18. doPhase2(3);
19. }); // Task T3
20.}); // finish

8 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Recap: Computation Graph for m=3
example

9 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

6

11

16

7-signal 7-wait

12-signal

17-signal

12-wait

17-wait

ph1.next
-start(0!1)

ph1.next
-end(0!1)

ph2.next
-start(0!1)

ph2.next
-end(0!1)

ph3.next
-start(0!1)

ph3.next
-end(0!1)

8

13

18

continue signal wait

Midterm exam (Exam 1)
• Midterm exam (Exam 1) will be held during COMP 322 lab time at

7pm on Wednesday, February 24, 2016
—Closed-notes, closed-book, closed computer, written exam

scheduled for 3 hours during 7pm — 10pm (but you can leave
early if you’re done early!)

—Scope of exam is limited to Lectures 1 - 16 (all topics in Module 1
handout)

—“Since this is a written exam and not a programming assignment,
syntactic errors in program text will not be penalized (e.g.,
missing semicolons, incorrect spelling of keywords, etc) so long
as the meaning of your solution is unambiguous.”

—“If you believe there is any ambiguity or inconsistency in a
question, you should state the ambiguity or inconsistency that
you see, as well as any assumptions that you make to resolve it.”

10 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

