
COMP 322: Fundamentals of
Parallel Programming

Lecture 20: Critical Sections
and the Isolated Construct

COMP 322 Lecture 20 1 March 2017

Instructors: Vivek Sarkar, Mack Joyner
Department of Computer Science, Rice University

{vsarkar, mjoyner}@rice.edu

http://comp322.rice.edu/

Compute the WORK and CPL values for the program shown below. How would they be different
if the signal() statement was removed? (Hint: draw a computation graph as in slide 11)

WORK = 204, CPL = 102. If the signal() is removed, CPL = 202.

Worksheet #19:
Critical Path Length for Computation with Signal Statement

1.finish(() -> {
2. final HjPhaser ph = newPhaser(SIG_WAIT);
3. asyncPhased(ph.inMode(SIG_WAIT), () -> { // Task T1
4. A(0); doWork(1); // Shared work in phase 0
5. signal();
6. B(0); doWork(100); // Local work in phase 0
7. next(); // Wait for T2 to complete shared work in phase 0
8. C(0); doWork(1);
9. });
10. asyncPhased(ph.inMode(SIG_WAIT), () -> { // Task T2
11. A(1); doWork(1); // Shared work in phase 0
12. next(); // Wait for T1 to complete shared work in phase 0
13. C(1); doWork(1);
14. D(1); doWork(100); // Local work in phase 0
15. });
16.}); // finish

2 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Name: ___________________ Netid: ___________________

Formal Definition of Data Races (Recap)
Formally, a data race occurs on location L in a program execution with
computation graph CG if there exist steps (nodes) S1 and S2 in CG such
that:
1. S1 does not depend on S2 and S2 does not depend on S1 i.e., there

is no path of dependence edges from S1 to S2 or from S2 to S1 in
CG, and

2. Both S1 and S2 read or write L, and at least one of the accesses is a
write.

However, there are many cases in practice when two tasks may
legitimately need to perform conflicting accesses to shared locations
without incurring data races

— How should conflicting accesses be handled in general, when
outcome may be nondeterministic?

⇒ Focus of Module 2: “Concurrency” (nondeterministic parallelism)

3 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Example of two tasks performing conflicting
accesses --- need for “mutual exclusion”

1. class DoublyLinkedListNode {
2. DoublyLinkedListNode prev, next;
3. . . .
4. void delete() {
5. { // start of desired mutual exclusion region
6. this.prev.next = this.next;
7. this.next.prev = this.prev;
8. } // end of desired mutual exclusion region
9. . . . // remaining code in delete() that does not need mutual exclusion
10. }
11. } // DoublyLinkedListNode
12. . . .
13. static void deleteTwoNodes(final DoublyLinkedListNode L) {
14. finish(() -> {
15. DoublyLinkedListNode second = L.next;
16. DoublyLinkedListNode third = second.next;
17. async(() -> { second.delete(); });
18. async(() -> { third.delete(); }); // conflicts with previous async
19. });
20. }

4 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

How to enforce mutual exclusion?
• The predominant approach to ensure mutual exclusion proposed many

years ago is to enclose the code region in a critical section.
—“In concurrent programming a critical section is a piece of code that

accesses a shared resource (data structure or device) that must not
be concurrently accessed by more than one thread of execution. A
critical section will usually terminate in fixed time, and a thread,
task or process will have to wait a fixed time to enter it (aka
bounded waiting). Some synchronization mechanism is required at
the entry and exit of the critical section to ensure exclusive use, for
example a semaphore.”

— Source: http://en.wikipedia.org/wiki/Critical_section

5 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

HJ isolated construct
isolated (() -> <body>);

• Isolated construct identifies a critical section

• Two tasks executing isolated constructs are guaranteed to perform them in mutual exclusion
!Isolation guarantee applies to (isolated, isolated) pairs of constructs, not to (isolated,

non-isolated) pairs of constructs

• Isolated constructs may be nested
— An inner isolated construct is redundant

• Blocking parallel constructs are forbidden inside isolated constructs
—Isolated constructs must not contain any parallel construct that performs a blocking

operation e.g., finish, future get, next
—Non-blocking async operations are permitted, but isolation guarantee only applies to

creation of async, not to its execution

• Isolated constructs can never cause a deadlock
— Other techniques used to enforce mutual exclusion (e.g., locks — which we will learn

later) can lead to a deadlock, if used incorrectly

6 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Use of isolated to fix previous example with
conflicting accesses

1. class DoublyLinkedListNode {
2. DoublyLinkedListNode prev, next;
3. . . .
4. void delete() {
5. isolated(() -> { // start of desired mutual exclusion region
6. this.prev.next = this.next;
7. this.next.prev = this.prev;
8. }); // end of desired mutual exclusion region
9. . . . // other code in delete() that does not need mutual exclusion
10. }
11. } // DoublyLinkedListNode
12. . . .
13. static void deleteTwoNodes(final DoublyLinkedListNode L) {
14. finish(() -> {
15. DoublyLinkedListNode second = L.next;
16. DoublyLinkedListNode third = second.next;
17. async(() -> { second.delete(); });
18. async(() -> { third.delete(); }); // conflicts with previous async
19. });
20. }

7 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Serialized Computation Graph for
Isolated Constructs

• Model each instance of an isolated construct as a distinct step (node) in the CG.

• Need to reason about the order in which interfering isolated constructs are executed
— Complicated because the order of isolated constructs may vary from execution

to execution

• Introduce Serialized Computation Graph (SCG) that includes a specific ordering of
all interfering isolated constructs.

— SCG consists of a CG with additional serialization edges.
— Each time an isolated step, S′, is executed, we add a serialization edge from S to

S′ for each prior “interfering” isolated step, S
– Two isolated constructs always interfere with each other
– Interference of “object-based isolated” constructs depends on intersection

of object sets
– Serialization edge is not needed if S and S’ are already ordered in CG

— An SCG represents a set of schedules in which all interfering isolated constructs
execute in the same order.

8 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

v1 v2 v16 v17 v18 v19

v3 v6 v9 v10 v11 v15 v20 v21 v22

v23

v4 v5 v7 v8 v12 v13 v14

Continue edge Spawn edge Join edge

!1

!2

!3 !4 !5

!6

Serialization edge v10: isolated { x ++; y = 10; }
v11: isolated { x++; y = 11; }
v16: isolated { x++; y = 16; }

Example of Serialized Computation Graph
with Serialization Edges for v10-v16-v11 order

 Data race definition can be applied to Serialized Computation Graphs
(SCGs) just like regular CGs

9 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

— Need to consider all possible orderings of interfering isolated

constructs to establish data race freedom

Object-based isolation
isolated(obj1, obj2, …, () -> <body>)

• In this case, programmer specifies list of objects for which
isolation is required

• Mutual exclusion is only guaranteed for instances of isolated
constructs that have a common object in their object lists
—Serialization edges are only added between isolated steps with

at least one common object (non-empty intersection of objstec
lists)

—Standard isolated is equivalent to “isolated(*)” by default i.e.,
isolation across all objects

• Inner isolated constructs are redundant — they are not allowed to
“add” new objects

10 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Pros and Cons of Object-Based
Isolation

• Pros
—Increases parallelism relative to critical section approach
—Simpler approach than “locks” (which we will learn later)
—Deadlock-freedom property is still guaranteed

• Cons
—Programmer needs to worry about getting the object list right
—Objects in object list can only be specified at start of the

isolated construct (new objects cannot be added later on)
— Large object lists can contribute to large overheads

11 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

1. class DoublyLinkedListNode {
2. DoublyLinkedListNode prev, next;
3. . . .
4. void delete() {
5. isolated(this.prev, this, this.next, () -> { // object-based isolation
6. this.prev.next = this.next;
7. this.next.prev = this.prev;
8. });
9. . . .
10. }
11. } // DoublyLinkedListNode
12. . . .
13. static void deleteTwoNodes(final DoublyLinkedListNode L) {
14. finish(() -> {
15. DoublyLinkedListNode second = L.next;
16. DoublyLinkedListNode third = second.next;
17. async(() -> { second.delete(); });
18. async(() -> { third.delete(); });
19. });
20. }

DoublyLinkedListNode Example revisited
with Object-Based Isolation

12 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Spanning Tree Definition
• A spanning tree, T, of a connected undirected graph G is

• rooted at some vertex of G

• defined by a parent map for each vertex

• contains all the vertices of G, i.e. spans all vertices

• contains exactly |v| - 1 edges

• adding any other edge will create a cycle

• contains no cycles (a tree!)

• implies the edges involved in T is a subset of the
edges in G

13 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

An Example Graph with 4 possible
spanning trees rooted at vertex A

A B

C D

A B

C D

A B

C D

A B

C D

A B

C D

Vertex Parent

A null
B D
C A
D C

Vertex Parent

A null
B A
C D
D B

Vertex Parent

A null
B A
C A
D B

Vertex Parent

A null
B A
C A
D C

Example Undirected Graph:

Spanning Trees (edges are directed from child to parent):

14 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

1. class V {
2. V [] neighbors; // adjacency list for input graph
3. V parent; // output value of parent in spanning tree

4. boolean makeParent(V n) {
5. if (parent == null) { parent = n; return true; }
6. else return false; // return true if n became parent
7. } // makeParent

8. void compute() {
9. for (int i=0; i<neighbors.length; i++) {
10. final V child = neighbors[i];
11. if (child.makeParent(this))
12. child.compute(); // recursive call
13. }
14. } // compute
15. } // class V
16. . . . // main program
17. root.parent = root; // Use self-cycle to identify root
18. root.compute();
19. . . .

Sequential Parallel Spanning Tree Algorithm

15 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

java.util.concurrent.atomic.AtomicInteger
• Constructors

—new AtomicInteger()
– Creates a new AtomicInteger with initial value 0

—new AtomicInteger(int initialValue)
– Creates a new AtomicInteger with the given initial value

• Selected methods
—int addAndGet(int delta)

– Atomically adds delta to the current value of the atomic variable, and
returns the new value

—int getAndAdd(int delta)
– Atomically returns the current value of the atomic variable, and adds

delta to the current value

• Similar interfaces available for LongInteger

16 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

java.util.concurrent.AtomicInteger methods and their
equivalent isolated constructs (pseudocode)

• Body Level One
— Body Level Two

– Body Level Three
Body Level Four

Body Level Five

17 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Methods in java.util.concurrent.AtomicInteger class and their
equivalent HJ isolated statements. Variable v refers to an
AtomicInteger object in column 2 and to a standard non-atomic Java
object in column 3. val refers to a field of type int.

Work-Sharing Pattern using AtomicInteger
1. import java.util.concurrent.atomic.AtomicInteger;
2. . . .
3. String[] X = ... ; int numTasks = ...;
4. int[] taskId = new int[X.length];
5. AtomicInteger a = new AtomicInteger();
6. . . .
7. finish(() -> {
8. for (int i=0; i<numTasks; i++)
9. async(() -> {
10. do {
11. int j = a.getAndAdd(1);
12. // can also use a.getAndIncrement()
13. if (j >= X.length) break;
14. taskId[j] = i; // Task i processes string X[j]
15. . . .
16. } while (true);
17. });
18.}); // finish-for-async

18 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

