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Worksheet #37:  
Creating a Circuit for Parallel Prefix Sums
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Name: ___________________          Netid: ___________________

Assume that you have a full adder cell, ⊕, that can be used as a building block 
for circuits (no need to worry about carry’s).  Create a circuit that generates the 
prefix sums for 1, … 6, by adding at most 5 more cells to the sketch shown below, 
while ensuring that the CPL is at most 3 cells long.  Assume that you can duplicate 
any value (fan-out) to whatever degree you like without any penalty. 

1        2       3        4        5        6       (Inputs) 

         ⊕                ⊕                  ⊕ 
                  ⊕       ⊕ 
                                    ⊕ 
                                              ⊕ 

1        3        6      10       15        21    (Outputs) 

   



Demo

• Performance gap between GPUs and multicore CPUs continues to 
widen
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So I Can Move Dots Around,
So What?

• Google - Use GPUs internally to train deep learning models (e.g. for 
NLP) 

• USA Departments of Energy & Defense - 3rd fastest supercomputer 
in the world based on GPUs, two of the next three supercomputers 
deployed by USA Department of Energy will be GPU based 

• Mayo Clinic - Using GPUs to improve tumor identification 

• Audi - Using GPUs for self-driving cars 

• SpaceX - Uses GPUs internally for combustion modeling of Merlin 
methane-based rocket 

• Facebook - Uses GPUs through their open source Caffe2 framework 

• …
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Single Instruction, Single Data stream (SISD) 
A sequential computer which exploits no parallelism in either the instruction or data 

streams. e.g., old single processor PC 

Single Instruction, Multiple Data streams (SIMD) 
A computer which exploits multiple data streams against a single instruction stream to 
perform operations which may be naturally parallelized. e.g. graphics processing unit 

Multiple Instruction, Single Data stream (MISD) 
Multiple instructions operate on a single data stream. Uncommon architecture which is 
generally used for fault tolerance. Heterogeneous systems operate on the same data 
stream and must agree on the result. e.g. the Space Shuttle flight control computer. 

Multiple Instruction, Multiple Data streams (MIMD) 
Multiple autonomous processors simultaneously executing different instructions on 
different data. e.g. a PC cluster memory space. 

Flynn’s Taxonomy for Parallel 
Computers

Single Instruction Multiple Instructions
Single Data SISD MISD
Multiple Data SIMD MIMD
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http://en.wikipedia.org/wiki/SISD
http://en.wikipedia.org/wiki/SIMD
http://en.wikipedia.org/wiki/MISD
http://en.wikipedia.org/wiki/MIMD


Multicore Processors are examples of 
MIMD systems

• Memory hierarchy for a single Intel Xeon Quad-core E5530 
processor chip

Regs

L1  
d-cache

L1  
i-cache

L2 unified cache

Core A

L3 unified cache 

Main memory

Regs

L1  
d-cache

Core B

L1  
i-cache

Regs

L1  
d-cache

L1  
i-cache

L2 unified cache

Core C

Regs

L1  
d-cache

Core D

L1  
i-cache
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8

SIMD computers
• Definition: A single instruction stream is applied to multiple data 

elements.  
• One program text 
• One instruction counter 
• Distinct data streams per Processing Element (PE) 

• Examples: Vector Procs, GPUs

PE

PE

PE

PE

Source: Mattson and Keutzer, UCB 
CS294
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 “CPU-Style” Cores
The “CPU-Style” core is designed to make individual threads speedy.
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Fetch/Decode

ALU (Execute)

Out-of-order control logic

Branch predictor logic

Memory pre fetch unit

Large data cache

Execution 
contexts 
 
 
 
 

“Execution context” == memory and hardware associated  
to a specific stream of instructions (e.g. a thread) 
Multiple cores lead to MIMD computers 



 GPU Design Idea #1: more slow cores
The first big idea that differentiates GPU and CPU core design: 

slim down the footprint of each core.

Slides and graphics based on presentations  
from Andreas Klöckner and Kayvon Fatahalian
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Fetch/Decode

ALU (Execute)

Execution 
contexts 
 
 
 
 

Idea #1:  

Remove the modules that 
help a single instruction 
execute fast.

http://cs.nyu.edu/courses/fall10/G22.2945-001/slides/lect6.pdf
http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf


 GPU Design Idea #1: more slow cores

See: Andreas Klöckner  
and Kayvon Fatahalian
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ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

http://cs.nyu.edu/courses/fall10/G22.2945-001/slides/lect6.pdf
http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf


 GPU Design Idea #2: lock stepping
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See: Andreas Klöckner  
and Kayvon Fatahalian

Fetch/Decode

ALU 

 
 
 
 
 
Shared Ctx Data

Ct

ALU ALU ALU 

ALU ALU ALU ALU 

Ct Ct Ct

Ct Ct Ct Ct

shared 
memory  
SIMD model

In the GPU rendering context, the instruction streams are typically very similar. 

Design for a “single instruction multiple data” SIMD model: 
share the cost of the instruction stream across many ALUs (i.e. single program 
counter for multiple “cores”)

Fetch/Decode

ALU (Execute)

Execution 
contexts 
 
 
 
 

http://cs.nyu.edu/courses/fall10/G22.2945-001/slides/lect6.pdf
http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf


 GPU Design Idea #2: branching ?
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See: Andreas Klöckner  
and Kayvon Fatahalian

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
Question:  

 
What happens when the instruction streams 

include branching ? 

How can they execute in lock step? 

http://cs.nyu.edu/courses/fall10/G22.2945-001/slides/lect6.pdf
http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf


 GPU Design Idea #2: lock stepping w/ 
branching
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Non branching code; 

if(flag > 0){ /* branch */ 
  x = exp(y); 
  y = 2.3*x; 
}  
else{ 
  x = sin(y); 
  y = 2.1*x; 
} 

Non branching code;

ALU ALU ALU ALU ALU ALU ALU ALU 

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

T T F T T F F F
✓ ✓ X ✓ ✓ X X X
✓ ✓ X ✓ ✓ X X X

X X ✓ X X ✓ ✓ ✓

X X ✓ X X ✓ ✓ ✓

Time

The cheap branching approach means that some ALUs are idle as all ALUs 
traverse all branches [ executing NOPs if necessary ]  

In the worst possible case we could see 1/8 of maximum performance.

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓



 GPU Design Idea #3: latency hiding
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See: Andreas Klöckner  
and Kayvon Fatahalian

ALU ALU ALU ALU ALU ALU ALU ALU 

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Time

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

work on registers; 
work on registers; 
work on registers; 

load registers from 
main memory;

It takes O(1000) cycles to load data from 
off chip memory into the SM registers file 

These ALUs are idled (stalled) after a load

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

http://cs.nyu.edu/courses/fall10/G22.2945-001/slides/lect6.pdf
http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf


 GPU Design Idea #3: latency hiding
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See: Andreas Klöckner  
and Kayvon Fatahalian

Fetch/Decode

ALU 

 
 
 
 
 
Shared Ctx Data

Ct

ALU ALU ALU 

ALU ALU ALU ALU 

Ct Ct Ct

Ct Ct Ct Ct

Idea #3: enable fast context switching so the ALUs  
 can efficiently alternate between different tasks.

Fetch/Decode

ALU ALU ALU ALU 

ALU ALU ALU ALU 

 
 
 

 
 
 

 
 
 

 
 
 

1 2

3 4

http://cs.nyu.edu/courses/fall10/G22.2945-001/slides/lect6.pdf
http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf


 GPU Design Idea #3: context switching

Body Level Five
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See: Andreas Klöckner  
and Kayvon Fatahalian

ALU ALU ALU ALU ALU ALU ALU ALU 

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ti
me

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ctx1: work on registers; 
Ctx1: work on registers; 
Ctx1: work on registers; 
Ctx1: load request, switch context;✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ctx3: work on registers; 
Ctx3: work on registers; 
Ctx3: work on registers; 
Ctx3: load request, switch context;✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ctx2: work on registers; 
Ctx2: work on registers; 
Ctx2: work on registers; 
Ctx2: load request, switch context;

Ctx1: load done so continue

http://cs.nyu.edu/courses/fall10/G22.2945-001/slides/lect6.pdf
http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf


Summary: CPUs and GPUs have 
fundamentally different design 

DRAM 

Co 
Ca  A A  A  A  A A  A A  A A A  A  A  A A  A 

Streaming Multiprocessor 

Cache 

ALU 
Control 

ALU 

ALU 

ALU 

DRAM 

Single CPU core Multiple GPU processors 

GPU = Graphics Processing Unit

GPUs are provided to accelerate graphics, but they can also be used 
for non-graphics applications that exhibit large amounts of data 
parallelism and require large amounts of “streaming” throughput 
⇒ SIMD parallelism within an SM, and SPMD parallelism across SMs
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Host vs. Device
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GPU (a
ka

 dev
ice

)

CPU (a
ka host)



Host vs. Device
• The GPU has its own independent memory space. 

• The GPU brick is a separate compute sidecar. 

• We refer to: 
— the GPU as a “DEVICE” 
— the CPU as the “HOST” 

• An array that is in HOST-attached memory is not directly visible to the 
DEVICE, and vice versa. 

• To load data onto the DEVICE from the HOST: 
— We allocate memory on the DEVICE for the array 
— We then copy data from the HOST array to the DEVICE array  

• To retrieve results from the DEVICE they have to be copied from the 
DEVICE array to the HOST array.
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Execution of a CUDA program 
Host Code  

(small number of threads)

. . .    

. . .    

Device Kernel 
(large number of threads)

Host Code  
(small number of threads)

Device Kernel 
(large number of threads)

Host Code  
(small number of threads)
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Explicit host-device communication

Explicit host-device communication

Explicit host-device communication

Explicit host-device communication



 Outline of a CUDA main program

Body Level Five
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pseudo_cuda_code.cu: 

__global__ void kernel(arguments) { 

  instructions for a single GPU thread; 
} 

... 

main(){ 

set up GPU arrays; 

copy CPU data to GPU; 

kernel <<< # thread blocks, # threads per block >>> (arguments); 

copy GPU data to CPU; 

}



CUDA Storage Classes + Thread 
Hierarchy

• Local Memory:    per-thread 
— Private per thread 
— Auto variables, register spill 

• Shared Memory:  per-Block 
— Shared by threads of the same block 
— Inter-thread communication 

• Global Memory:   per-application 
— Shared by all threads 
— Inter-Grid communication

Thread

Local Memory

Grid 0

. . .
    

Global 
Memory

. . .
    

Grid 1
Sequential 
Grids 
in Time

 
Block

Shared 
Memory
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CUDA Host-Device Data Transfer
• cudaError_t cudaMemcpy(void* dst, const 

void* src, size_t count, enum 
cudaMemcpyKind kind) 

• Copies count bytes from the memory area 
pointed to by src to the memory area 
pointed to by dst, where kind is one of  
— cudaMemcpyHostToHost 
— cudaMemcpyHostToDevice 
— cudaMemcpyDeviceToHost 
— cudaMemcpyDeviceToDevice  

• The memory areas may not overlap 

• Calling cudaMemcpy() with dst and src 
pointers that do not match the direction of 
the copy results in an undefined behavior. 

(Device) Grid

Constant 
Memory

Texture 
Memory

Global 
Memory

Block (0, 0)

Shared Memory

Local 
Mem
ory

Thread 
(0, 0)

Regist

Local 
Mem
ory

Thread 
(1, 0)

Regist

Block (1, 0)

Shared Memory

Local 
Mem
ory

Thread 
(0, 0)

Regist

Local 
Mem
ory

Thread 
(1, 0)

Regist

Host
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Matrix multiplication kernel code in 
CUDA --- SPMD model with 2D index 

Body Level Five

24 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)



Host Code in C for Matrix Multiplication
1. void MatrixMultiplication(float* M, float* N, float* P, int Width) 

{ 
2.   int size = Width*Width*sizeof(float); // matrix size 
3.   float* Md, Nd, Pd; // pointers to device arrays 
4.   cudaMalloc((void**)&Md, size); // allocate Md on device 
5.   cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice); // copy M to Md 
6.   cudaMalloc((void**)&Nd, size); // allocate Nd on device 
7.   cudaMemcpy(Nd, M, size, cudaMemcpyHostToDevice); // copy N to Nd 
8.   cudaMalloc((void**)&Pd, size); // allocate Pd on device 
9.   dim3 dimBlock(Width,Width); dim3 dimGrid(1,1); 
10.   // launch kernel (equivalent to “async at(GPU), forall, forall” 
11.   MatrixMulKernel<<<dimGrid,dimBlock>>>(Md, Nd, Pd, Width); 
12.   cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost); // copy Pd to P 
13.   // Free device matrices 
14.   cudaFree(Md); cudaFree(Nd); cudaFree(Pd);  
15. }

25 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)



CUDA construct Related HJ/Java constructs

Kernel invocation, 
<<<. . .>>>

async at(gpu-place)

1D/2D grid with 1D/2D/3D 
blocks of threads

Outer 1D/2D forall with inner 1D/2D/3D forall

Intra-block barrier, 
__syncthreads()

HJ forall-next on implicit phaser for inner forall

cudaMemcpy() No direct equivalent in HJ/Java (can use 
System.arraycopy() if needed)

Storage classes: local, 
shared, global

No direct equivalent in HJ/Java (method-local 
variables are scalars)

Summary of key features in CUDA
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Worksheet #35: Branching in SIMD code
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Consider SIMD execution of the following pseudocode with 8 threads.  
Assume that each call to doWork(x) takes x units of time, and ignore 
all other costs.  How long will this program take when executed on 8 
GPU cores, taking into consideration the branching issues discussed 
in Slide 9? 

1. int tx = threadIdx.x; // ranges from 0 to 7 
2. if (tx % 2 = 0) { 
3.   S1: doWork(1); // Computation S1 takes 1 unit of time 
4. }  
5. else { 
6.   S2: doWork(2); // Computation S2 takes 2 units of time 
7. } 

Name: ___________________          Netid: ___________________



BACKUP SLIDES START HERE
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HJ abstraction of a CUDA kernel 
invocation: async at + forall + forall 

async at(GPU)

async at(GPU)

forall(blockIdx)

forall(threadIdx)
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