One Possible Solution to Worksheet 2
(Reverse Engineering a Computation Graph)

Observations:
• Any node with out-degree > 1 must be an async (must have an outgoing spawn edge)
• Any node with in-degree > 1 must be an end-finish (must have an incoming join edge)
• Adding or removing transitive edges does not impact ordering constraints

1. A();
2. finish { // F1
3. async D();
4. B();
5. async {
6. E();
7. finish { // F2
8. async H();
9. F();
10. } // F2
11. G();
12. }
13. } // F1
14. C();
Ordering Constraints and Transitive Edges in a Computation Graph

• The primary purpose of a computation graph is to determine if an ordering constraint exists between two steps (nodes)
 —Observation: Node A must be performed before node B if there is a path of directed edges from A and B

• An edge, \(X \rightarrow Y \), in a computation graph is said to be transitive if there exists a path of directed edges from X to Y that does not include the \(X \rightarrow Y \) edge
 —Observation: Adding or removing a transitive edge does not change the ordering constraints in a computation graph
Ideal Parallelism (Recap)

- Define **ideal parallelism** of Computation Graph G as the ratio, $\frac{\text{WORK}(G)}{\text{CPL}(G)}$
- Ideal Parallelism only depends on the computation graph, and is the speedup that you can obtain with an unbounded number of processors

Example:
- $\text{WORK}(G) = 26$
- $\text{CPL}(G) = 11$
- Ideal Parallelism = $\frac{\text{WORK}(G)}{\text{CPL}(G)} = \frac{26}{11} \approx 2.36$
What is the critical path length of this parallel computation?

1. `finish { // F1`
2. `async A; // Boil water & pasta (10)`
3. `finish { // F2`
4. `async B1; // Chop veggies (5)`
5. `async B2; // Brown meat (10)`
6. `} // F2`
7. `B3; // Make pasta sauce (5)`
8. `} // F1`

Step A

Step B1

Step B2

Step B3
Computation Graphs are used in Project Scheduling as well

- Computation graphs are referred to as “Gantt charts” in project management
- Sample project for preparing a printed document
 —Source: http://www.gantt.com/creating-gantt-charts.htm
Scheduling of a Computation Graph on a fixed number of processors: Example

node label = time(N), for all nodes N in the graph

NOTE: this schedule achieved a completion time of 11. Can we do better?
Scheduling of a Computation Graph on a fixed number of processors, P

• Assume that node N takes \(\text{TIME}(N) \) regardless of which processor it executes on, and that there is no overhead for creating parallel tasks.

• A schedule specifies the following for each node:
 — \(\text{START}(N) \) = start time
 — \(\text{PROC}(N) \) = index of processor in range 1…P

such that

— \(\text{START}(i) + \text{TIME}(i) \leq \text{START}(j) \), for all CG edges from i to j (Precedence constraint)

— A node occupies consecutive time slots in a processor (Non-preemption constraint)

— All nodes assigned to the same processor occupy distinct time slots (Resource constraint)
Greedy Schedule

- A greedy schedule is one that never forces a processor to be idle when one or more nodes are ready for execution
- A node is ready for execution if all its predecessors have been executed
- Observations
 - $T_1 = WORK(G)$, for all greedy schedules
 - $T_\infty = CPL(G)$, for all greedy schedules
- where $T_P(S)$ = execution time of schedule S for computation graph G on P processors
Lower Bounds on Execution Time of Schedules

- Let T_P = execution time of a schedule for computation graph G on P processors
 - T_P can be different for different schedules, for same values of G and P

- Lower bounds for all greedy schedules
 - Capacity bound: $T_P \geq \text{WORK}(G)/P$
 - Critical path bound: $T_P \geq \text{CPL}(G)$

- Putting them together
 - $T_P \geq \max(\text{WORK}(G)/P, \text{CPL}(G))$
Upper Bound on Execution Time of Greedy Schedules

Theorem [Graham '66]. Any greedy scheduler achieves
\[T_p \leq \text{WORK}(G)/P + \text{CPL}(G) \]

Proof sketch:
Define a time step to be **complete** if \(P \) processors are scheduled at that time, or **incomplete** otherwise

\[
\begin{array}{c|c|c|c}
\text{Start time} & \text{Proc 1} & \text{Proc 2} & \text{Proc 3} \\
0 & A & & \\
1 & B & & \\
2 & C & N & \\
3 & D & N & I \\
4 & D & N & J \\
5 & D & N & K \\
6 & D & Q & L \\
7 & E & R & M \\
8 & F & R & O \\
9 & G & R & P \\
10 & H & & \\
11 & & & \\
\end{array}
\]
Bounding the performance of Greedy Schedulers

Combine lower and upper bounds to get

\[\max(\text{WORK}(G)/P, \text{CPL}(G)) \leq T_P \leq \text{WORK}(G)/P + \text{CPL}(G) \]

Corollary 1: Any greedy scheduler achieves execution time \(T_P \) that is within a factor of 2 of the optimal time (since \(\max(a,b) \) and \((a+b) \) are within a factor of 2 of each other, for any \(a \geq 0, b \geq 0 \)).

Corollary 2: Lower and upper bounds approach the same value whenever

- There’s lots of parallelism, \(\text{WORK}(G)/\text{CPL}(G) \gg P \)
- Or there’s little parallelism, \(\text{WORK}(G)/\text{CPL}(G) \ll P \)
Abstract Performance Metrics (Lab 1)

- **Basic Idea**
 - Count operations of interest, as in big-O analysis, to evaluate parallel algorithms
 - Abstraction ignores many overheads that occur on real systems

- **Calls to doWork()**
 - Programmer inserts calls of the form, `doWork(N)`, within a step to indicate abstraction execution of `N` application-specific abstract operation
 - e.g., in the Homework 1 programming assignment (Parallel Sort), we will include one call to `doWork(1)` in each call to `compareTo()`, and ignore the cost of everything else

- **Abstract metrics** are enabled by calling `HjSystemProperty.abstractMetrics.set(true)` at start of program execution

- If an HJ program is executed with this option, abstract metrics can be printed at end of program execution with calls to `abstractMetrics().totalWork()`, `abstractMetrics().criticalPathLength()`, and `abstractMetrics().idealParallelism()`
Announcements & Reminders

• IMPORTANT:
 — Watch video & read handout for topic 1.5 for next lecture on Wednesday, Jan 17th

• HW1 was posted on the course web site (http://comp322.rice.edu) on Jan 10th, and is due on Jan 24th

• Quiz for Unit 1 (topics 1.1 - 1.5) is due by Jan 26th on Canvas

• See course web site for all work assignments and due dates

• Use Piazza (public or private posts, as appropriate) for all communications re. COMP 322

• See Office Hours link on course web site for latest office hours schedule.