Lecture 4: Parallel Speedup and Amdahl’s Law

Mack Joyner and Zoran Budimlić
{mjoyner, zoran}@rice.edu

http://comp322.rice.edu
One Possible Solution to Worksheet 3 (Multiprocessor Scheduling)

There are 4 idle slots in this schedule — can we do better than $T_2 = 15$?

- As before, $\text{WORK} = 26$ and $\text{CPL} = 11$ for this graph
- $T_2 = 15$, for the 2-processor schedule on the right
- We can also see that $\max(\text{CPL,WORK}/2) \leq T_2 < \text{CPL} + \text{WORK}/2$

### Start time	Proc 1	Proc 2
0 | A | \(\text{null}\)
1 | B | \(\text{null}\)
2 | C | N
3 | D | N
4 | D | N
5 | D | N
6 | D | O
7 | I | Q
8 | J | R
9 | L | R
10 | K | R
11 | M | E
12 | F | P
13 | G | \(\text{null}\)
14 | H | \(\text{null}\)
15 | \(\text{null}\) | \(\text{null}\)
Parallel Speedup

• Define Speedup(P) = \(T_1 / T_P \)
 — Factor by which the use of P processors speeds up execution time relative to 1 processor, for a fixed input size
 — For ideal executions without overhead, \(1 \leq \text{Speedup}(P) \leq P \)
 — This is what you will see with abstract metrics, but these bounds may not hold when we start measuring real execution times with real overheads
 — Linear speedup
 - When Speedup(P) = k*P, for some constant k, 0 < k < 1

• Ideal Parallelism = WORK / CPL = \(T_1 / T_\infty \)
 = Parallel Speedup on an unbounded (infinite) number of processors
Assume greedy schedule, input array size = S is a power of 2, each add takes 1 time unit

- $\text{WORK}(G) = S - 1$, and $\text{CPL}(G) = \log_2(S)$
- Define $T(S,P) =$ parallel execution time for Array Sum with size S on P processors
- Use upper bound $T(S,P) \leq \text{WORK}(G)/P + \text{CPL}(G)$ as a worst-case estimate
 - $T(S,P) = \text{WORK}(G)/P + \text{CPL}(G) = (S-1)/P + \log_2(S)$
- $\Rightarrow \text{Speedup}(S,P) = T(S,1)/T(S,P) = (S-1)/((S-1)/P + \log_2(S))$
How many processors should we use?

- **Define Efficiency(P) = Speedup(P)/ P = T₁/(P * Tₚ)**
 - Processor efficiency --- figure of merit that indicates how well a parallel program uses available processors
 - For ideal executions without overhead, 1/P <= Efficiency(P) <= 1
 - Efficiency(P) = 1 (100%) is the best we can hope for.

- **Half-performance metric**
 - S₁/₂ = input size that achieves Efficiency(P) = 0.5 for a given P
 - Figure of merit that indicates how large an input size is needed to obtain efficient parallelism
 - A larger value of S₁/₂ indicates that the problem is harder to parallelize efficiently

- **How many processors to use?**
 - Common goal: choose number of processors, P for a given input size, S, so that efficiency is at least 0.5 (50%)
ArraySum: Speedup as function of array size, S, and number of processors, P

- Speedup(S,P) = $T(S,1)/T(S,P) = (S-1)/((S-1)/P + \log_2(S))$

- Asymptotically, Speedup(S,P) $\rightarrow (S-1)/\log_2 S$, as $P \rightarrow \infty$

Efficiency(P) ≤ 0.5, for $P \geq 258$

\Rightarrow wasteful to use more than 256 processors for $S=2048$

Efficiency(P) ≤ 0.5, for $P \geq 128$

\Rightarrow wasteful to use more than 128 processors for $S=1024$
Amdahl’s Law [1967]

• If \(q \leq 1 \) is the fraction of WORK in a parallel program that must be executed sequentially for a given input size \(S \), then the best speedup that can be obtained for that program is \(\text{Speedup}(S,P) \leq 1/q \).

• Observation follows directly from critical path length lower bound on parallel execution time

 \[
 \begin{align*}
 \text{CPL} & \geq q \times T(S,1) \\
 T(S,P) & \geq q \times T(S,1) \\
 \text{Speedup}(S,P) & = \frac{T(S,1)}{T(S,P)} \leq \frac{1}{q}
 \end{align*}
 \]

• This upper bound on speedup simplistically assumes that work in program can be divided into sequential and parallel portions

 — Sequential portion of WORK = \(q \)
 - also denoted as \(f_s \) (fraction of sequential work)

 — Parallel portion of WORK = \(1-q \)
 - also denoted as \(f_p \) (fraction of parallel work)

• Computation graph is more general and takes dependences into account
Illustration of Amdahl’s Law: Best Case Speedup as function of Parallel Portion

Figure source: http://en.wikipedia.org/wiki/Amdahl's law
Announcements & Reminders

- IMPORTANT:
 - Watch video & read handout for topic 2.1 for next lecture on Monday, Jan 22nd

- HW1 was posted on the course web site (http://comp322.rice.edu) on Jan 10th, and is due on Jan 24th

- Quiz for Unit 1 (topics 1.1 - 1.5) is due by Jan 26th on Canvas

- Midterm exam will be on Thursday, Feb 22nd. Time is TBD.

- See course web site for all work assignments and due dates

- Use Piazza (public or private posts, as appropriate) for all communications re. COMP 322

- See Office Hours link on course web site for latest office hours schedule.