COMP 322: Fundamentals of Parallel Programming

Lecture 7: Memoization and Map/Reduce

Mack Joyner and Zoran Budimlić \{mjoyner, zoran\}@rice.edu
http://comp322.rice.edu

Worksheet \#6 solution: Associativitv and Commutativitv

Recap:
A binary function f is associative if $f(f(x, y), z)=f(x, f(y, z))$.
A binary function f is commutative if $f(x, y)=f(y, x)$.

Worksheet problems:

1) Claim: a Finish Accumulator (FA) can only be used with operators that are associative and commutative. Why? What can go wrong with accumulators if the operator is non-associative or non-commutative?
You may get different answers in different executions if the operator is nonassociative or non-commutative e.g., an accumulator can be implemented using one "partial accumulator" per processor core.
2) For each of the following functions, indicate if it is associative and/or commutative.
a) $f(x, y)=x+y$, for integers x, y, is associative and commutative
b) $g(x, y)=(x+y) / 2$, for integers x, y, is commutative but not associative
c) $h(s 1, s 2)=$ concat(s1, s2) for strings s1, s2, e.g., $h(" a b "$ ","cd") = "abcd", is associative but not commutative

Background: Functional Programming

- Eliminate side-effects
- emphasizes functions whose results that depend only on their inputs and not on any other program state
- calling a function, $f(x)$, twice with the same value for the argument x will produce the same result both times

Helpful Link: http://en.wikipedia.org/wiki/Functional_programming

Example: Binomial Coefficient

- The coefficient of the x^{k} term in the polynomial expansion of the binomial power $(1+x)^{n}$
- Number of sets of k items that can be chosen from n items
- Indexed by n and k
- written as $\mathrm{C}(\mathrm{n}, \mathrm{k})$
- read as "n choose k"
- Factorial Formula: $\mathrm{C}(\mathrm{n}, \mathrm{k})=\left(\frac{n!}{k!(n-k)!}\right)$
- Recursive Formula

$$
C(n, k)=C(n-1, k-1)+C(n-1, k)
$$

Base cases: $\mathrm{C}(\mathrm{n}, \mathrm{n})=\mathrm{C}(\mathrm{n}, 0)=\mathrm{C}(0, \mathrm{k})=1$
Helpful Link: http://en.wikipedia.org/wiki/Binomial coefficient

Example: Binomial Coefficient (Recursive Sequential version)

1. int choose(int N , int K$)$ \{
2. if $(N==0\|K==0\| N==K)$ \{
3. return 1;
4. \}
5. int left = choose ($\mathrm{N}-1, \mathrm{~K}-1$);
6. int right = choose $(\mathrm{N}-1, \mathrm{~K})$;
7. return left + right;
8. \}

Example: Binomial Coefficient (Parallel Recursive Pseudocode)

1. Integer choose(int N , int K$)$ \{
2. if $(N==0\|K==0\| N==K)\{$
$3 . \quad$ return 1;
3. \}
4. future<Integer> left $=$
5. future \{ return choose (N-1, K-1); \}
6. future<Integer> right $=$
7. future $\{$ return choose $(\mathrm{N}-1, \mathrm{~K})$; \}
8. return left.get() + right.get();
9. \}

- Use of futures supports incremental parallelization with low developer effort

What inefficiencies do you see in the recursive Binomial Coefficient algorithm?

Memoization

- Memoization - saving and reusing previously computed values of a function rather than recomputing them
- A optimization technique with space-time tradeoff
- A function can only be memoized if it is referentially transparent, i.e. functional
- Related to caching
- memoized function "remembers" the results corresponding to some set of specific inputs
- memoized function populates its cache of results transparently on the fly, as needed, rather than in advance
Helpful Link: http://en.wikipedia.org/wiki/Memoization

Example: Binomial Coefficient (sequential memoized version)

1. final Map<Pair<Int, Int>, Int> cache = new ...;
```
2. int choose(int N, int K) {
3. Pair<Int, Int> key = Pair.factory(N, K);
4. if (cache.contains(key)) {
        return cache.get(key);
    }
    if (N == 0 || K == 0 || N == K) {
        return 1;
    }
        int left = choose (N-1, K-1);
        int right = choose (N-1,K);
        int result = left + right;
        cache.put(key, result);
        return result;
    }
```


Example: Binomial Coefficient (parallel memoized version w/ futures)

1. final Map<Pair<Int, Int>, future<Integer>> cache = new ...;
2. Integer choose(final int N, final int K) \{
3. final Pair<Int, Int> key = Pair.factory(N, K);
4. if (cache.contains(key)) \{
5. return cache.get(key).get();
6. $\}$
7. future<Integer> $\mathrm{f}=$ future $\{$
8. if $(\mathrm{N}==0\|\mathrm{~K}==0\| \mathrm{N}=\mathrm{K})$ return 1;
9. future<lnteger> left $=$ future $\{$ return choose $(\mathrm{N}-1, \mathrm{~K}-1) ;\}$
10. future<Integer> right $=$ future $\{$ return choose $(\mathrm{N}-1, \mathrm{~K}) ;\}$
11. return left.get() + right.get();
12. \}
13. cache.put(key, f);
14. return f.get();
15. \}

- Assumes availability of a "thread-safe" cache library, e.g., ConcurrentHashMap

Map/Reduce: Streaming data requirements have skyrocketed

- AT\&T processes roughly 30 petabytes per day through its telecommunications network
- Google processed roughly 24 petabytes per day in 2009
- Facebook, Amazon, Twitter, etc, have comparable throughputs
- Two Sigma maintains over 100 teraflops of private computing power, continuously computing over 11 petabytes of quantitative data
- In comparison, the IBM Watson knowledge base stored roughly 4 terabytes of data when winning at Jeopardy

Parallelism enables processing of big data

- Continuously streaming data needs to be processed at least as fast as it is accumulated, or we will never catch up
- The bottleneck in processing very large data sets is dominated by the speed of disk access
- More processors accessing more disks enables faster processing

MapReduce Pattern

- Apply Map function f to user supplied record of keyvalue pairs
- Compute set of intermediate key/value pairs
- Apply Reduce operation g to all values that share same key to combine derived data properly
-Often produces smaller set of values
- User supplies Map and Reduce operations in functional model so that the system can parallelize them, and also re-execute them for fault tolerance

MapReduce: The Map Step

Source: $\underline{h t t p: / / i n f o l a b . s t a n f o r d . e d u / \sim u l l m a n / m i n i n g / 2009 / m a p r e d u c e . p p t ~}$

MapReduce: The Reduce Step

Source: $\underline{h t t p: / / i n f o l a b . s t a n f o r d . e d u / \sim u l l m a n / m i n i n g / 2009 / m a p r e d u c e . p p t ~}$

Map Reduce: Summary

- Input set is of the form $\{(k 1, v 1), \ldots(k n, v n)\}$, where $(k i, ~ v i)$ consists of a key, ki, and a value, vi.
- Assume that the key and value objects are immutable, and that equality comparison is well defined on all key objects.
- Map function f generates sets of intermediate key-value pairs, $\mathrm{f}(\mathrm{ki}, \mathrm{vi})=\left\{\left(\mathrm{k} 1^{\prime}, \mathrm{v} 1^{\prime}\right), \ldots\left(\mathrm{km}^{\prime}, \mathrm{vm}{ }^{\prime}\right)\right\}$. The km ' keys can be different from ki key in the map function.
- Assume that a flatten operation is performed as a postpass after the map operations, so as to avoid dealing with a set of sets.
- Reduce operation groups together intermediate key-value pairs, $\left\{\left(k^{\prime}\right.\right.$, vj') $\}$ with the same k^{\prime}, and generates a reduced keyvalue pair, ($k^{\prime}, v^{\prime \prime}$), for each such k^{\prime}, using reduce function g

Google Uses MapReduce For ...

- Web crawl: Find outgoing links from HTML documents, aggregate by target document
- Google Earth: Stitching overlapping satellite images to remove seams and to select high-quality imagery
- Google Maps: Processing all road segments on Earth and render map tile images that display segments

MapReduce Execution

WordCount example

In: set of words

Out: set of (word,count) pairs
Algorithm:

1. For each in word \mathbf{W}, emit ($W, 1$) as a key-value pair (map step).
2. Group together all key-value pairs with the same key (reduce step).
3. Perform a sum reduction on all values with the same key(reduce step).

- All map operations in step 1 can execute in parallel with only local data accesses
- Step 2 may involve a major reshuffle of data as all key-value pairs with the same key are grouped together.
- Step 3 performs a standard reduction algorithm for all values with the same key, and in parallel for different keys.

PseudoCode for WordCount

1. <String, Integer> map(String inKey, String invalue):
2. // inKey: document name
3. // inValue: document contents
4. for each word w in invalue:
5. emitIntermediate(w, 1) // Produce count of words
6.
7. <Integer> reduce(String outKey, Iterator<Integer> values):
8. // outKey: a word
9. // values: a list of counts
10. Integer result $=0$
11. for each v in values:
12. result += $v / /$ the value from map was an integer
13. emit(result)

Example Execution of WordCount Program

Distribute

is 6 ; it 2 ; not 2 ; that 5

Announcements \& Reminders

- IMPORTANT:
—Watch video \& read handout for topic 2.5 and 2.6 for next lecture on Monday, Jan 29th
- HW2 is available and due by Wednesday, Feb 7th
- Quiz for Unit 1 (topics 1.1-1.5) is due by 11:59pm TODAY on Canvas
- See course web site for all work assignments and due dates
- Use Piazza (public or private posts, as appropriate) for all communications re. COMP 322
- See Office Hours link on course web site for latest office hours schedule.

