
COMP 322: Fundamentals of Parallel Programming

Lecture 13: Parallelism in Java Streams,
Parallel Prefix Sums

Zoran Budimlić and Mack Joyner
{zoran, mjoyner}@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 13 7 February 2018

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Worksheet #12: Forall Loops and Barriers
Draw a “barrier matching” figure similar to lecture 12 slide 11 for the code fragment below.

1. String[] a = { “ab”, “cde”, “f” };

2. . . . int m = a.length; . . .

3. forallPhased (0, m-1, (i) -> {

4. for (int j = 0; j < a[i].length(); j++) {

5. // forall iteration i is executing phase j

6. System.out.println("(" + i + "," + j + ")");

7. next();

8. }

9. });

2

Solution

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

How Java Streams addressed pre-Java-8 limitations of Java
Collections

1. Iteration had to be performed explicitly using for/foreach loop, e.g.,
// Iterate through students (collection of Student objects)
for (Student s in students) System.out.println(s);

⇒ Simplified using Streams as follows
students.stream().foreach(s -> System.out.println(s));

2. Overhead of creating intermediate collections
List<Student> activeStudents = new ArrayList<Student>();
for (Student s in students)
 if (s.getStatus() == Student.ACTIVE) activeStudents.add(s);
for (Student a in activeStudents) totalCredits += a.getCredits();

⇒ Simplified using Streams as follows

totalCredits = students.stream().filter(s -> s.getStatus() == Student.ACTIVE)
 .mapToInt(a -> a.getCredits()).sum();

3. Complexity of parallelism simplified (for example by replacing stream() by parallelStream())

3

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Java 8 Streams Cheat Sheet

Source: http://zeroturnaround.com/rebellabs/java-8-streams-cheat-sheet/
4

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Parallelism in processing Java Streams

• Parallelism can be introduced at a stream source …
— e.g., library.parallelStream()…

• … or as an intermediate operation
— e.g., library.stream().sorted().parallel()…

• Stateful intermediate operations should be avoided on parallel streams …
— e.g., distinct, sorted, user-written lambda with side effects

• … but stateless intermediate operations work just fine
— e.g., filter, map

• Parallelism is usually more efficient on unordered streams …
— e.g., stream created from unordered source (HashSet), or from .unordered() intermediate

operation

• … and with unordered collectors
— e.g., ConcurrentHashMap

5

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Beyond Sum/Reduce Operations —
Prefix Sum (Scan) Problem Statement

Given input array A, compute output array X as follows

• The above is an inclusive prefix sum since X[i] includes A[i]

• For an exclusive prefix sum, perform the summation for 0 <=j <i

• It is easy to see that inclusive prefix sums can be computed sequentially in O(n) time …
// Copy input array A into output array X

X = new int[A.length]; System.arraycopy(A,0,X,0,A.length);

// Update array X with prefix sums

for (int i=1 ; i < X.length ; i++) X[i] += X[i-1];

• … and so can exclusive prefix sums

6

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

An Inefficient Parallel Algorithm for Exclusive Prefix Sums

1. forall(0, X.length-1, (i) -> {
2. // computeSum() adds A[0..i-1]
3. X[i] = computeSum(A, 0, i-1);
4. }

Observations:

• Critical path length, CPL = O(log n)

• Total number of operations, WORK = O(n2)

• With P = O(n) processors, the best execution time that you can achieve is TP =
max(CPL, WORK/P) = O(n), which is no better than sequential!

7

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

How can we do better?

Assume that input array A = [3, 1, 2, 0, 4, 1, 1, 3]

Define scan(A) = exclusive prefix sums of A = [0, 3, 4, 6, 6, 10, 11, 12]

Hint:

• Compute B by adding pairwise elements in A to get B = [4, 2, 5, 4]

• Assume that we can recursively compute scan(B) = [0, 4, 6, 11]

• How can we use A and scan(B) to get scan(A)?

8

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Another way of looking at the parallel algorithm
Observation: each prefix sum can be decomposed into reusable terms of power-of-2-size e.g.

Approach:

• Combine reduction tree idea from Parallel Array Sum with partial sum idea from
Sequential Prefix Sum

• Use an “upward sweep” to perform parallel reduction, while storing partial sum terms in
tree nodes

• Use a “downward sweep” to compute prefix sums while reusing partial sum terms stored
in upward sweep

9

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Parallel Prefix Sum: Upward Sweep
(while calling scan recursively)

10

Upward sweep is just like Parallel Reduction, except that partial sums are also
stored along the way

1. Receive values from left and right children
2. Compute left+right and store in box
3. Send left+right value to parent

15

2

Input array, A:

4

6
15

5 4

9

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

1. Receive value from parent (root receives 0)
2. Send parent’s value to LEFT child (prefix sum for elements to left of left child’s

subtree)
3. Send parent’s value+ left child’s box value to RIGHT child (prefix sum for

elements to left of right child’s subtree)
4. Add A[i] to get inclusive prefix sum

+ A[i]

Exclusive prefix sums

Parallel Prefix Sum: Downward Sweep
(while returning from recursive calls to scan)

11

0

4

6
15

5 4

9

Inclusive prefix sums

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Summary of Parallel Prefix Sum Algorithm

• Critical path length, CPL = O(log n)

• Total number of add operations, WORK = O(n)

• Optimal algorithm for P = O(n/log n) processors
— Adding more processors does not help

• Parallel Prefix Sum has several applications that go beyond computing the
sum of array elements

• Parallel Prefix Sum can be used for any operation that is associative (need
not be commutative)

— In contrast, finish accumulators required the operator to be both
associative and commutative

12

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Parallel Filter Operation
[Credits: David Walker and Andrew W. Appel (Princeton), Dan Grossman (U. Washington)]

Given an array input, produce an array output containing only elements such that
f(elt) is true, i.e., output =
input.parallelStream().filter(f).toArray()

Example: input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]

 f: is elt > 10

 output [17, 11, 13, 19, 24]

Parallelizable?
—Finding elements for the output is easy
—But getting them in the right place seems hard

13

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Parallel prefix to the rescue

1. Parallel map to compute a bit-vector for true elements (can use Java streams)
input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
bits [1, 0, 0, 0, 1, 0, 1, 1, 0, 1]

2. Parallel-prefix sum on the bit-vector (not available in Java streams)
 bitsum [1, 1, 1, 1, 2, 2, 3, 4, 4, 5]
3. Parallel map to produce the output (can use Java streams)
 output [17, 11, 13, 19, 24]
  

14

output = new array of size bitsum[n-1]
FORALL(i=0; i < input.length; i++){
 if(bits[i]==1)
 output[bitsum[i]-1] = input[i];
}

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Announcements & Reminders

• HW2 is available and due today by 11:59pm

• HW3 will be available today and due March 21st (two intermediate
checkpoints!)

• Quiz for Unit 2 (topics 2.1 - 2.6) is available on Canvas, and due by 11:59pm
on Monday

• Watch the topic 3.5, 3.6 videos for the next lecture

• Use Piazza (public or private posts, as appropriate) for all communications
re. COMP 322

• See Office Hours link on course web site for latest office hours schedule.

15

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Worksheet #13:
Parallelism in Java Streams, Parallel Prefix Sums

1. Arrays
2. .asList(“a1", "a2", "b1", "c2", "c1")
3. .parallelStream()
4. .filter(s -> s.startsWith(“c"))
5. .sorted()
6. .map(String::toUpperCase)
7. .forEach(System.out::println);

16

Name: __________________________________ Netid: ___________________

1. What output will the following Java Streams code print?

2. Which stream operation in this example could benefit from a parallel prefix sum implementation, and why?
(Assume a larger array when answering this question, so that overheads of parallelism are not an issue.)

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Backup Slides

17

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Parallelizing Quicksort
(Remember Homework 1?)

18

 Best / expected case work
1. Pick a pivot element O(1)
2. Partition all the data into: O(n)

A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot

3. Recursively sort A and C 2T(n/2)

Simple approach: Do the two recursive calls in parallel
• Work: unchanged at O(n log n)
• Span: now CPL(n) = O(n) + CPL(n/2) = O(n)
• So parallelism (i.e., work / span) is O(log n)

Sophisticated approach: use scans for the partition step
• Work: unchanged at O(n log n)
• Span: now CPL(n) = O(log n) + CPL(n/2) = O(log2 n)
• So average parallelism (i.e., work / span) is O(n / log n)

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Example

• Step 1: pick pivot as median of three

19

8 1 4 9 0 3 5 2 7 6

• Steps 2: implement partition step as two filter/pack operations
that store result in a second array

1 4 0 3 5 2

1 4 0 3 5 2 6 8 9 7

• Step 3: Two recursive sorts in parallel

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Example Applications of Parallel Prefix Algorithm

• Prefix Max with Index of First Occurrence: given an input array A, output an
array X of objects such that X[i].max is the maximum of elements A[0…i] and
X[i].index contains the index of the first occurrence of X[i].max in A[0…i]

—Homework 2 includes this problem just for the entire array (not intermediate
prefix “sums”)

• Filter and Packing of Strings: given an input array A identify elements that
satisfy some desired property (e.g., uppercase), and pack them in a new output
array. (First create a 0/1 array for elements that satisfy the property, and then
compute prefix sums to identify locations of elements to be packed.)

—Useful for parallelizing partitioning step in Parallel Quicksort algorithm
(Approaches 2 and 3)

20

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Use of Prefix Sums to parallelize partition() in Quicksort (Approach 2,
Summary of Listing 30)

1. partition(int[] A, int M, int N) { // choose pivot from M..N

2. forall (point [k] : [0:N-M]) { // parallel loop

3. lt[k] = (A[M+k] < A[pivot] ? 1 : 0); // bit vector with < comparisons

4. eq[k] = (A[M+k] == A[pivot] ? 1 : 0); // bit vector with = comparisons

5. gt[k] = (A[M+k] > A[pivot] ? 1 : 0); // bit vector with > comparisons

6. buffer[k] = A[M+k]; // Copy A[M..N] into buffer

7. }

8. ... Copy lt, eq, gt, into ltPS, eqPS, gtPS before step 9 ...

9. final int ltCount = computePrefixSums(ltPS); //update lt with prefix sums

10. final int eqCount = computePrefixSums(eqPS); //update eq with prefix sums

11. final int gtCount = computePrefixSums(gtPS); //update gt with prefix sums

12. // Parallel move from buffer into A

13. forall (point [k] : [0:N-M]) {

14. if(lt[k]==1) A[M+ltPS[k]-1] = buffer[k];

15. else if(eq[k]==1) A[M+ltCount+eqPS[k]-1] = buffer[k];

16. else A[M+ltCount+eqCount+gtPS[k]-1] = buffer[k];

17. }

18. . . .

19.} // partition

21

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Examples of Intermediate Operations
• filter

• map

• mapTo... (Int, Long or Double)

• flatMap

• flatMapTo... (Int, Long or Double)

• distinct

• sorted

• peek

• limit

• skip

• sequential

• parallel

• unordered

• onClose

22

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Examples of Terminal Operations
• forEach

• forEachOrdered

• toArray

• reduce

• collect

• min

• max

• count

• anyMatch

• allMatch

• noneMatch

• findFirst

• findAny iterator

• spliterator

23

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Overview of Java Streams

• Definition: a possibly-infinite sequence of elements supporting sequential or parallel aggregate
operations

• possibly-infinite: elements are processed lazily

• sequential or parallel: two kinds of streams

• aggregate: operations act on the entire stream

— contrast: iterators

• Some stream sources  
 Invoking .stream() or .parallelStream() on any Collection Invoking .lines() on a BufferedReader 
 Generating from a function: Stream.generate(Supplier<T> s)

• Intermediate operations 
 Produce one stream from another Examples: map, filter, sorted, ...

• Each stream is used only once, with an intermediate or terminal operation

• Terminal operations 
 Extract a value or a collection from a stream Examples: reduce, collect, count, findAny

24

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Example: what will this code print?

List<String> myList =

 Arrays.asList("a1", "a2", "b1", "c2", "c1");

myList

 .stream()

 .filter(s -> s.startsWith("c"))

 .map(String::toUpperCase)

 .sorted()

 .forEach(System.out::println);

25

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Pitfalls when using Java Streams

• Blocking calls in Stream computation

• Can only operate on a stream once
—java.lang.IllegalStateException: stream has already been operated upon or

closed

• Creation of infinite streams

• Modifying backing collection when processing a stream

26

