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Worksheet #12: Forall Loops and Barriers
Draw a “barrier matching” figure similar to lecture 12 slide 11 for the code fragment below. 

1. String[] a = { “ab”, “cde”, “f” }; 

2. . . . int m = a.length; . . .  

3. forallPhased (0, m-1, (i) -> { 

4.   for (int j = 0; j < a[i].length(); j++) { 

5.     // forall iteration i is executing phase j 

6.     System.out.println("(" + i + "," + j + ")"); 

7.     next();    

8.   } 

9. });
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How Java Streams addressed pre-Java-8 limitations of Java 
Collections

1. Iteration had to be performed explicitly using for/foreach loop, e.g., 
// Iterate through students (collection of Student objects) 
for (Student s in students) System.out.println(s); 

⇒ Simplified using Streams as follows 
students.stream().foreach(s -> System.out.println(s)); 

2. Overhead of creating intermediate collections  
List<Student> activeStudents = new ArrayList<Student>(); 
for (Student s in students)  
     if (s.getStatus() == Student.ACTIVE) activeStudents.add(s); 
for (Student a in activeStudents) totalCredits += a.getCredits(); 

⇒ Simplified using Streams as follows 

totalCredits = students.stream().filter(s -> s.getStatus() == Student.ACTIVE) 
                           .mapToInt(a -> a.getCredits()).sum(); 

3. Complexity of parallelism simplified (for example by replacing stream() by parallelStream())
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Java 8 Streams Cheat Sheet

Source: http://zeroturnaround.com/rebellabs/java-8-streams-cheat-sheet/ 
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Parallelism in processing Java Streams

• Parallelism can be introduced at a stream source … 
— e.g., library.parallelStream()… 

• … or as an intermediate operation 
— e.g., library.stream().sorted().parallel()… 

• Stateful intermediate operations should be avoided on parallel streams … 
— e.g., distinct, sorted, user-written lambda with side effects 

• … but stateless intermediate operations work just fine  
— e.g., filter, map 

• Parallelism is usually more efficient on unordered streams … 
— e.g., stream created from unordered source (HashSet), or from .unordered() intermediate 

operation 

• … and with unordered collectors 
— e.g., ConcurrentHashMap
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Beyond Sum/Reduce Operations — 
Prefix Sum (Scan) Problem Statement

Given input array A, compute output array X as follows 

• The above is an inclusive prefix sum since X[i] includes A[i] 

• For an exclusive prefix sum, perform the summation for 0 <=j <i 

• It is easy to see that inclusive prefix sums can be computed sequentially in O(n) time … 
// Copy input array A into output array X 

X = new int[A.length]; System.arraycopy(A,0,X,0,A.length); 

// Update array X with prefix sums 

for (int i=1 ; i < X.length ; i++ ) X[i] += X[i-1]; 

• … and so can exclusive prefix sums
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An Inefficient Parallel Algorithm for Exclusive Prefix Sums

1. forall(0, X.length-1, (i) -> {  
2.    // computeSum() adds A[0..i-1] 
3.    X[i] = computeSum(A, 0, i-1); 
4. } 

Observations: 

• Critical path length, CPL = O(log n) 

• Total number of operations, WORK = O(n2) 

• With P = O(n) processors, the best execution time that you can achieve is TP = 
max(CPL, WORK/P) = O(n), which is no better than sequential!
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How can we do better?

Assume that input array A = [3, 1, 2, 0, 4, 1, 1, 3] 

Define scan(A) = exclusive prefix sums of A = [0, 3, 4, 6, 6, 10, 11, 12] 

Hint:  

• Compute B by adding pairwise elements in A to get B = [4, 2, 5, 4] 

• Assume that we can recursively compute scan(B) = [0, 4, 6, 11] 

• How can we use A and scan(B) to get scan(A)?

8



COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Another way of looking at the parallel algorithm
Observation: each prefix sum can be decomposed into reusable terms of power-of-2-size e.g. 

Approach:  

• Combine reduction tree idea from Parallel Array Sum with partial sum idea from 
Sequential Prefix Sum 

• Use an “upward sweep” to perform parallel reduction, while storing partial sum terms in 
tree nodes 

• Use a “downward sweep” to compute prefix sums while reusing partial sum terms stored 
in upward sweep
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Parallel Prefix Sum: Upward Sweep 
(while calling scan recursively)
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Upward sweep is just like Parallel Reduction, except that partial sums are also 
stored along the way 

1. Receive values from left and right children 
2. Compute left+right and store in box 
3. Send left+right value to parent

15

2

Input array, A:

4

6
15

5 4
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1. Receive value from parent (root receives 0) 
2. Send parent’s value to LEFT child (prefix sum for elements to left of left child’s 

subtree) 
3. Send parent’s value+ left child’s box value to RIGHT child (prefix sum for 

elements to left of right child’s subtree) 
4. Add A[i] to get inclusive prefix sum

+ A[i]

Exclusive prefix sums

Parallel Prefix Sum: Downward Sweep 
(while returning from recursive calls to scan)
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Summary of Parallel Prefix Sum Algorithm

• Critical path length, CPL = O(log n) 

• Total number of add operations, WORK = O(n) 

• Optimal algorithm for P = O(n/log n) processors 
— Adding more processors does not help 

• Parallel Prefix Sum has several applications that go beyond computing the 
sum of array elements 

• Parallel Prefix Sum can be used for any operation that is associative (need 
not be commutative) 

— In contrast, finish accumulators required the operator to be both 
associative and commutative
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Parallel Filter Operation 
[Credits: David Walker and Andrew W. Appel (Princeton), Dan Grossman (U. Washington)]

Given an array input, produce an array output containing only elements such that 
f(elt) is true, i.e., output = 
input.parallelStream().filter(f).toArray() 

Example:  input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24] 

        f: is elt > 10 

        output [17, 11, 13, 19, 24] 

Parallelizable? 
—Finding elements for the output is easy 
—But getting them in the right place seems hard
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Parallel prefix to the rescue

1. Parallel map to compute a bit-vector for true elements (can use Java streams) 
input  [17, 4, 6, 8, 11, 5, 13, 19, 0, 24] 
bits   [1,  0, 0, 0,  1, 0,  1,  1, 0,  1] 

2. Parallel-prefix sum on the bit-vector (not available in Java streams) 
 bitsum [1,  1, 1, 1,  2, 2,  3,  4, 4,  5] 
3. Parallel map to produce the output (can use Java streams) 
 output [17, 11, 13, 19, 24] 
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output = new array of size bitsum[n-1] 
FORALL(i=0; i < input.length; i++){ 
  if(bits[i]==1) 
    output[bitsum[i]-1] = input[i]; 
}
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Announcements & Reminders

• HW2 is available and due today by 11:59pm 

• HW3 will be available today and due March 21st (two intermediate 
checkpoints!) 

• Quiz for Unit 2 (topics 2.1 - 2.6) is available on Canvas, and due by 11:59pm 
on Monday 

• Watch the topic 3.5, 3.6 videos for the next lecture  

• Use Piazza (public or private posts, as appropriate) for all communications 
re. COMP 322 

• See Office Hours link on course web site for latest office hours schedule. 
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Worksheet #13:  
Parallelism in Java Streams, Parallel Prefix Sums

1.  Arrays 
2.    .asList(“a1", "a2", "b1", "c2", "c1") 
3.    .parallelStream() 
4.    .filter(s -> s.startsWith(“c")) 
5.    .sorted() 
6.    .map(String::toUpperCase) 
7.    .forEach(System.out::println);
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Name: __________________________________          Netid: ___________________

1. What output will the following Java Streams code print? 

2. Which stream operation in this example could benefit from a parallel prefix sum implementation, and why?  
(Assume a larger array when answering this question, so that overheads of parallelism are not an issue.)
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Backup Slides
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Parallelizing Quicksort 
(Remember Homework 1?)
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         Best / expected case work 
1. Pick a pivot element        O(1) 
2. Partition all the data into:       O(n) 

A. The elements less than the pivot 
B. The pivot 
C. The elements greater than the pivot 

3. Recursively sort A and C                             2T(n/2)

Simple approach: Do the two recursive calls in parallel 
• Work: unchanged at O(n log n) 
• Span: now CPL(n) = O(n) + CPL(n/2) = O(n) 
• So parallelism (i.e., work / span) is O(log n) 

Sophisticated approach: use scans for the partition step 
• Work: unchanged at O(n log n) 
• Span: now CPL(n) = O(log n) + CPL(n/2) = O(log2 n) 
• So average parallelism (i.e., work / span) is O(n / log n) 
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Example

• Step 1: pick pivot as median of three

19

8 1 4 9 0 3 5 2 7 6

• Steps 2: implement partition step as two filter/pack operations 
that store result in a second array 

 
1 4 0 3 5 2  

1 4 0 3 5 2 6 8 9 7

• Step 3: Two recursive sorts in parallel
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Example Applications of Parallel Prefix Algorithm

• Prefix Max with Index of First Occurrence: given an input array A, output an 
array X of objects such that X[i].max is the maximum of elements A[0…i] and 
X[i].index contains the index of the first occurrence of X[i].max in A[0…i] 

—Homework 2 includes this problem just for the entire array (not intermediate 
prefix “sums”) 

• Filter and Packing of Strings: given an input array A identify elements that 
satisfy some desired property (e.g., uppercase), and pack them in a new output 
array.  (First create a 0/1 array for elements that satisfy the property, and then 
compute prefix sums to identify locations of elements to be packed.) 

—Useful for parallelizing partitioning step in Parallel Quicksort algorithm 
(Approaches 2 and 3)
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Use of Prefix Sums to parallelize partition() in Quicksort (Approach 2, 
Summary of Listing 30)

1.  partition(int[] A, int M, int N) { // choose pivot from M..N 

2.   forall (point [k] : [0:N-M]) { // parallel loop 

3.    lt[k] = (A[M+k] < A[pivot] ? 1 : 0);  // bit vector with < comparisons 

4.    eq[k] = (A[M+k] == A[pivot] ? 1 : 0); // bit vector with = comparisons 

5.    gt[k] = (A[M+k] > A[pivot] ? 1 : 0);  // bit vector with > comparisons 

6.    buffer[k] = A[M+k];                   // Copy A[M..N] into buffer 

7.   } 

8.   ... Copy lt, eq, gt, into ltPS, eqPS, gtPS before step 9 ... 

9.   final int ltCount = computePrefixSums(ltPS); //update lt with prefix sums 

10. final int eqCount = computePrefixSums(eqPS); //update eq with prefix sums 

11. final int gtCount = computePrefixSums(gtPS); //update gt with prefix sums 

12. // Parallel move from buffer into A 

13. forall (point [k] : [0:N-M]) { 

14.   if(lt[k]==1) A[M+ltPS[k]-1] = buffer[k]; 

15.   else if(eq[k]==1) A[M+ltCount+eqPS[k]-1] = buffer[k]; 

16.   else A[M+ltCount+eqCount+gtPS[k]-1] = buffer[k]; 

17.  } 

18.  . . . 

19.}  // partition
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Examples of Intermediate Operations
• filter 

• map 

• mapTo... (Int, Long or Double) 

• flatMap 

• flatMapTo... (Int, Long or Double) 

• distinct 

• sorted 

• peek 

• limit 

• skip 

• sequential 

• parallel 

• unordered 

• onClose
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Examples of Terminal Operations
• forEach 

• forEachOrdered 

• toArray 

• reduce 

• collect 

• min 

• max 

• count 

• anyMatch 

• allMatch 

• noneMatch 

• findFirst 

• findAny iterator 

• spliterator
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Overview of Java Streams

• Definition: a possibly-infinite sequence of elements supporting sequential or parallel aggregate 
operations  

•  possibly-infinite: elements are processed lazily  

•  sequential or parallel: two kinds of streams  

•  aggregate: operations act on the entire stream  

— contrast: iterators  

• Some stream sources  
 Invoking .stream() or .parallelStream() on any Collection  Invoking .lines() on a BufferedReader 
 Generating from a function: Stream.generate(Supplier<T> s)  

• Intermediate operations 
 Produce one stream from another  Examples: map, filter, sorted, ...  

• Each stream is used only once, with an intermediate or terminal operation  

• Terminal operations 
 Extract a value or a collection from a stream  Examples: reduce, collect, count, findAny 
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Example: what will this code print?

List<String> myList = 

    Arrays.asList("a1", "a2", "b1", "c2", "c1"); 

myList 

    .stream() 

    .filter(s -> s.startsWith("c")) 

    .map(String::toUpperCase) 

    .sorted() 

    .forEach(System.out::println); 
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Pitfalls when using Java Streams

• Blocking calls in Stream computation 

• Can only operate on a stream once 
—java.lang.IllegalStateException: stream has already been operated upon or 

closed 

• Creation of infinite streams 

• Modifying backing collection when processing a stream
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