
COMP 322: Fundamentals of Parallel Programming

Lecture 21: Read-Write Isolation, Review of Phasers

Zoran Budimlić and Mack Joyner
{zoran, mjoyner}@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 21 2 March 2018

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

1. Insert finish, async, and isolated constructs (pseudocode is fine) to convert the sequential spanning tree
algorithm on the other side into a parallel algorithm

See slide 3, as well as the isolatedWithReturn() API in slide 4 for convenience in implementing the
pseudocode.

2. Is it better to use a global isolated or an object-based isolated construct for the parallelization in question
1? If object-based is better, which object(s) should be included in the isolated list?

Object-based isolation should be better with a singleton object list containing the “this” object for the
makeParent() method.

Worksheet #20 solution: Sequential->Parallel Spanning Tree Algorithm

2

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

1. class V {
2. V [] neighbors; // adjacency list for input graph
3. V parent; // output value of parent in spanning tree
4. boolean makeParent(final V n) {
5. return isolatedWithReturn(this, () -> {
6. if (parent == null) { parent = n; return true; }
7. else return false; // return true if n became parent
8. });
9. } // makeParent
10. void compute() {
11. for (int i=0; i<neighbors.length; i++) {
12. final V child = neighbors[i];
13. if (child.makeParent(this))
14. async(() -> { child.compute(); });
15. }
16. } // compute
17. } // class V
18. . . .
19. root.parent = root; // Use self-cycle to identify root
20. finish(() -> { root.compute(); });
21. . . .

Worksheet #20: Sequential->Parallel Spanning Tree Algorithm
using object-based isolated construct

3

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

HJ isolatedWithReturn construct

// <body> must contain return statement

isolatedWithReturn (obj1, obj2, …, () -> <body>);

Motivation: isolated() construct cannot modify local variables due to restrictions
imposed by Java 8 lambdas

• Workaround 1: use isolated() and modify objects rather than local variables

— Pro: code can be easier to understand than modifying local variables

— Con: source of errors if multiple tasks read/write same object

• Workaround 2: use isolatedWithReturn()

—Pro: cleaner than modifying local variables

—Con: can only return one value

4

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

java.util.concurrent.AtomicInteger methods and their equivalent object-based isolated
constructs (Lecture 20)

5

Methods in java.util.concurrent.AtomicInteger class and their equivalent HJ isolated statements.
Variable v refers to an AtomicInteger object in column 2 and to a standard non-atomic Java object in
column 3. val refers to a field of type int.

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

1.class V {
2. V [] neighbors; // adjacency list for input graph
3. AtomicReference<V> parent; // output value of parent in spanning tree
4. boolean makeParent(final V n) {
5. // compareAndSet() is a more efficient implementation of
6. // object-based isolation
7. return parent.compareAndSet(null, n);
8. } // makeParent
9. void compute() {
10. for (int i=0; i<neighbors.length; i++) {
11. final V child = neighbors[i];
12. if (child.makeParent(this))
13. async(() -> { child.compute(); }); // escaping async
14. }
15. } // compute
16.} // class V
17.. . .
18.root.parent = root; // Use self-cycle to identify root
19.finish(() -> { root.compute(); });
20.. . .

Atomic Variables represent a special (and more efficient)
case of Object-based isolation

6

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Motivation for Read-Write Object-based isolation
1. Sorted List example
2. public boolean contains(Object object) {
3. // Observation: multiple calls to contains() should not
4. // interfere with each other
5. return isolatedWithReturn(this, () -> {
6. Entry pred, curr;
7. ...
8. return (key == curr.key);
9. });
10. }
11.
12. public int add(Object object) {
13. return isolatedWithReturn(this, () -> {
14. Entry pred, curr;
15. ...
16. if (...) return 1; else return 0;
17. });
18. }

7

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Read-Write Object-based isolation in HJ
isolated(readMode(obj1),writeMode(obj2), …, () -> <body>);
• Programmer specifies list of objects as well as their read-write modes for which isolation is required
• Not specifying a mode is the same as specifying a write mode (default mode = read + write)
• Mutual exclusion is only guaranteed for instances of isolated statements that have a non-empty intersection in their object lists such

that one of the accesses is in writeMode
• Sorted List example
1. public boolean contains(Object object) {
2. return isolatedWithReturn(readMode(this), () -> {
3. Entry pred, curr;
4. ...
5. return (key == curr.key);
6. });
7. }
8.
9. public int add(Object object) {
10. return isolatedWithReturn(writeMode(this), () -> {
11. Entry pred, curr;
12. ...
13. if (...) return 1; else return 0;
14. });
15. }

8

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

The world according to Module 1
without & with Phasers

• All the non-phaser parallel constructs that we learned focused on task creation and termination
—async creates a task

– forasync creates a set of tasks specified by an iteration region
—finish waits for a set of tasks to terminate

– forall (like “finish forasync”) creates and waits for a set of tasks specified by an iteration
region

—future get() waits for a specific task to terminate
—asyncAwait() waits for a set of DataDrivenFuture values before starting

• Motivation for phasers
—Deterministic directed synchronization within tasks for barriers, point-to-point synchronization,

pipelining
—Separate from synchronization associated with task creation and termination
—next operations are much more efficient than task creation/termination (async/finish), but they

only help reduce overhead if you perform multiple next operations in a task

9

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Pipeline Parallelism: Another Example of Point-to-point
Synchronization (Recap)

• Medical imaging pipeline with three stages
1. Denoising stage generates a sequence of results, one per image.
2. Registration stage’s input is Denoising stage’s output.
3. Segmentation stage’s input is Registration stage’s output.

• Even though the processing is sequential for a single image, pipeline
parallelism can be exploited via point-to-point synchronization between
neighboring stages

10

DENOISE REGISTER SEGMENT

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Implementation of Medical Imaging Pipeline
1. final List<PhaserPair> phList1 = Arrays.asList(ph0.inMode(PhaserMode.SIG));

2. final List<PhaserPair> phList2 = Arrays.asList(ph0.inMode(PhaserMode.WAIT), ph1.inMode(PhaserMode.SIG));

3. final List<PhaserPair> phList3 = Arrays.asList(ph1.inMode(PhaserMode.WAIT));

4.

5. asyncPhased(phList1, () -> { // DENOISE stage

6. for (int i = 0; i < n; i++) {

7. doWork(1);

8. signal(); // same as ph0.signal(); as only ph0 is registered in this async

9. }

10. });

11.

12. asyncPhased(phList2, () -> { // REGISTER stage

13. for (int i = 0; i < n; i++) {

14. ph0.doWait(); // WARNING: Explicit calls to doWait() can lead to deadlock in general

15. doWork(1);

16. ph1.signal();

17. }

18. });

19.

20. asyncPhased(phList3, () -> { // SEGMENT stage

21. for (int i = 0; i < n; i++) {

22. ph1.doWait();

23. doWork(1);

11

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Serialized Computation Graph for Isolated Constructs (Recap)

• Model each instance of an isolated construct as a distinct step (node) in the CG.

• Need to reason about the order in which interfering isolated constructs are executed
— Complicated because the order of isolated constructs may vary from execution to execution

• Introduce Serialized Computation Graph (SCG) that includes a specific ordering of all
interfering isolated constructs.

— SCG consists of a CG with additional serialization edges.
— Each time an isolated step, S′, is executed, we add a serialization edge from S to S′ for each

prior “interfering” isolated step, S
– Two isolated constructs always interfere with each other
– Interference of “object-based isolated” constructs depends on intersection of object sets
– Serialization edge is not needed if S and S’ are already ordered in CG

— An SCG represents a set of schedules in which all interfering isolated constructs execute in
the same order.

12

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

v1 v2 v16 v17 v18 v19

v3 v6 v9 v10 v11 v15 v20 v21 v22

v23

v4 v5 v7 v8 v12 v13 v14

Continue edge Spawn edge Join edge

!1

!2

!3 !4 !5

!6

Serialization edge v10: isolated { x ++; y = 10; }
v11: isolated { x++; y = 11; }
v16: isolated { x++; y = 16; }

Example of Serialized Computation Graph with Serialization Edges for
v10-v16-v11 order (Recap)

 Data race definition can be applied to Serialized Computation Graphs (SCGs) just like regular CGs

13

— Need to consider all possible orderings of interfering isolated constructs to establish data race freedom

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Announcements

• Reminder: Quiz for Unit 4 is due today!

• Checkpoint #2 for Homework 3 will be due by Friday, March
9th, and the entire homework is due by March 21st

• We will reshuffle the lectures and lab next week:

• Lab #6 will be during the lecture time, 1PM-2PM on
Wednesday, March 7th.

• Lecture #23 will on Thursday, March 8th, 4-5PM.

• Scope of final exam (Exam 2) will be limited to Lectures 19 - 38

14

