
COMP 322: Fundamentals of Parallel Programming

Lecture 24: Java Threads,Java synchronized statement

Zoran Budimlić and Mack Joyner
{zoran, mjoyner}@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 24 9 March 2018

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Worksheet #23:
Analyzing Parallelism in an Actor Pipeline

Consider a three-stage pipeline of actors (as in slide 5), set up so that P0.nextStage = P1, P1.nextStage = P2,
and P2.nextStage = null. The process() method for each actor is shown below. Assume that 100 non-null
messages are sent to actor P0 after all three actors are started, followed by a null message. What will the
total WORK and CPL be for this execution? Recall that each actor has a sequential thread.
Solution: WORK = 300, CPL = 102
...

2

95
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen ! Prentice Hall, 1998

P0

P4

P3

P5

P2

P1

Time

Figure 5.6 Pipeline processing 10 data elements.

d9d8d7d6d5d4d3d2d1d0 P0 P1 P2 P3 P4 P5

(a) Pipeline structure

(b) Timing diagram

P8

P7

P9

P6

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

P7P6 P8 P9

Input sequence

p " 1 n

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8

d0 d1 d2 d3 d4 d5 d6 d7

d0 d1 d2 d3 d4 d5 d6

1. protected void process(final Object msg) {
2. if (msg == null) {
3. exit(); //actor will exit after returning from process()
4. } else {
5. doWork(1); // unit work
6. }
7. if (nextStage != null) {
8. nextStage.send(msg);
9. }
10. } // process()
 

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Introduction to Java Threads and the java.lang.Thread class

• Execution of a Java program begins with an instance of Thread created by the
Java Virtual Machine (JVM) that executes the program’s main() method.

• Parallelism can be introduced by creating additional instances of class Thread
that execute as parallel threads.

3

A lambda can be passed
as a Runnable

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

start() and join() methods

• A Thread instance starts executing when its start() method is invoked
— start() can be invoked at most once per Thread instance
— As with async, the parent thread can immediately move to the next statement after invoking

t.start()

• A t.join() call forces the invoking thread to wait till thread t completes.
— Lower-level primitive than finish since it only waits for a single thread rather than a collection

of threads
— No restriction on which thread performs a join on which thread, so it is possible to create a

deadlock cycle using join() even when there are no data races
– Declaring thread references as final does not help because the new() and start()

operations are separated for threads (unlike futures, where they are integrated)

4

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

1. // Start of main thread

2. sum1 = 0; sum2 = 0; // sum1 & sum2 are static fields
3. Thread t1 = new Thread(() -> {

4. // Child task computes sum of lower half of array
5. for(int i=0; i < X.length/2; i++) sum1 += X[i];

6. });
7. t1.start();

8. // Parent task computes sum of upper half of array
9. for(int i=X.length/2; i < X.length; i++) sum2 += X[i];

10. // Parent task waits for child task to complete (join)
11. t1.join();

12. return sum1 + sum2;

Two-way Parallel Array Sum
using Java Threads

5

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

1. // Start of Task T0 (main program)

2. sum1 = 0; sum2 = 0; // sum1 & sum2 are static fields
3. finish(() -> {

4. async(() -> {
5. // Child task computes sum of lower half of array

6. for(int i=0; i < X.length/2; i++) sum1 += X[i];
7. });

8. // Parent task computes sum of upper half of array
9. for(int i=X.length/2; i < X.length; i++) sum2 += X[i];

10. });
11. // Parent task waits for child task to complete (join)

12. return sum1 + sum2;

Compare with Two-way Parallel Array Sum
using HJ-Lib’s finish & async API’s

6

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

HJlib runtime uses Java threads as workers

• HJlib runtime creates a small number of worker threads in a thread pool, typically one per core

• Workers push async’s/continuations into a logical work queue

• when an async operation is performed

• when an end-finish operation is reached

• Workers pull task/continuation work item when they are idle

7

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Objects and Locks in Java — synchronized statements and methods

• Every Java object has an associated lock acquired via:
— synchronized statements
– synchronized(foo) { // acquire foo’s lock 

 // execute code while holding foo’s lock 
} // release foo’s lock

— synchronized methods
– public synchronized void op1() { // acquire ‘this‘ lock 

 // execute method while holding ‘this’ lock 
} // release ‘this’ lock

• Java language does not enforce any relationship between the object used for locking and objects
accessed in isolated code
— If same object is used for locking and data access, then the object behaves like a monitor

• Locking and unlocking are automatic
— Locks are released when a synchronized block exits

• By normal means: end of block reached, return, break
• When an exception is thrown and not caught

8

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Locking guarantees in Java

• It is preferable to use java.util.concurrent.atomic or HJlib isolated constructs,
since they cannot deadlock

• Locks are needed for more general cases. Basic idea is for JVM to implement
synchronized(a) <stmt> as follows:

1. Acquire lock for object a
2. Execute <stmt>
3. Release lock for object a

• The responsibility for ensuring that the choice of locks correctly implements
the semantics of isolation lies with the programmer.

• The main guarantee provided by locks is that only one thread can hold a given
lock at a time, and the thread is blocked when acquiring a lock if the lock is
unavailable.

9

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Deadlock example with Java synchronized statement

• The code below can deadlock if leftHand() and rightHand() are called concurrently from
different threads

— Because the locks are not acquired in the same order

 public class ObviousDeadlock {
 . . .
 public void leftHand() {
 synchronized(lock1) {
 synchronized(lock2) {
 for (int i=0; i<10000; i++)
 sum += random.nextInt(100);
 }
 }
 }
 }

10

 public void rightHand() {
 synchronized(lock2) {
 synchronized(lock1) {
 for (int i=0; i<10000; i++)
 sum += random.nextInt(100);
 }
 }
 }
 }

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Deadlock avoidance in HJ with object-based isolation

• HJ implementation ensures that all locks are acquired in the same order

• ==> no deadlock

 public class ObviousDeadlock {
 . . .
 public void leftHand() {
 isolated(lock1,lock2) {
 for (int i=0; i<10000; i++)
 sum += random.nextInt(100);
 }
 }
 }

11

 public void rightHand() {
 isolated(lock2, lock1) {
 for (int i=0; i<10000; i++)
 sum += random.nextInt(100);
 }
 }
 }

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Dynamic Order Deadlocks
• There are even more subtle ways for threads to deadlock due to inconsistent lock ordering

— Consider a method to transfer a balance from one account to another:
public class SubtleDeadlock {
 public void transferFunds(Account from,
 Account to,
 int amount) {
 synchronized (from) {
 synchronized (to) {
 from.subtractFromBalance(amount);
 to.addToBalance(amount);
 }
 }
 }
 }

— What if one thread tries to transfer from A to B while another tries to transfer from B to A ?
Inconsistent lock order again – Deadlock!

12

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Avoiding Dynamic Order Deadlocks
• The solution is to induce a lock ordering
— Here, uses an existing unique numeric key, acctId, to establish an order

public class SafeTransfer {

 public void transferFunds(Account from, Account to, int amount) {
 Account firstLock, secondLock; 

 if (fromAccount.acctId == toAccount.acctId) 
 throw new Exception(“Cannot self-transfer”); 
 else if (fromAccount.acctId < toAccount.acctId) { 
 firstLock = fromAccount; 
 secondLock = toAccount; 
 } 
 else { 
 firstLock = toAccount; 
 secondLock = fromAccount; 
 } 
 synchronized (firstLock) {

 synchronized (secondLock) {

 from.subtractFromBalance(amount);
 to.addToBalance(amount);

 }
 }

 } 
 }

13

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Java’s Object Locks are Reentrant
• Locks are granted on a per-thread basis

— Called reentrant or recursive locks
— Promotes object-oriented concurrent code

• A synchronized block means execution of this code requires the current thread to hold this lock
— If it does — fine
— If it doesn’t — then acquire the lock

• Reentrancy means that recursive methods, invocation of super methods, or local callbacks, don’t deadlock
 public class Widget {

 public synchronized void doSomething() { ... }

 }

 public class LoggingWidget extends Widget {

 public synchronized void doSomething() {

 Logger.log(this + ": calling doSomething()");

 super.doSomething(); // Doesn't deadlock!  
 } 
 }

14

