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Worksheet #23:  
Analyzing Parallelism in an Actor Pipeline

Consider a three-stage pipeline of actors (as in slide 5), set up so that P0.nextStage = P1, P1.nextStage = P2, 
and P2.nextStage = null.  The process() method for each actor is shown below.  Assume that 100 non-null 
messages are sent to actor P0 after all three actors are started, followed by a null message.  What will the 
total WORK and CPL be for this execution?  Recall that each actor has a sequential thread. 
Solution: WORK = 300, CPL = 102 
...
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Figure 5.6 Pipeline processing 10 data elements.
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1.     protected void process(final Object msg) { 
2.         if (msg == null) { 
3.           exit(); //actor will exit after returning from process() 
4.         } else { 
5.           doWork(1); // unit work 
6.         } 
7.         if (nextStage != null) { 
8.           nextStage.send(msg); 
9.         } 
10.    } // process() 
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Introduction to Java Threads and the java.lang.Thread class

• Execution of a Java program begins with an instance of Thread created by the 
Java Virtual Machine (JVM) that executes the program’s main() method.  

• Parallelism can be introduced by creating additional instances of class Thread 
that execute as parallel threads. 
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start() and join() methods

• A Thread instance starts executing when its start() method is invoked 
— start() can be invoked at most once per Thread instance 
— As with async, the parent thread can immediately move to the next statement after invoking 

t.start() 

• A t.join() call forces the invoking thread to wait till thread t completes.  
— Lower-level primitive than finish since it only waits for a single thread rather than a collection 

of threads 
— No restriction on which thread performs a join on which thread, so it is possible to create a 

deadlock cycle using join() even when there are no data races 
– Declaring thread references as final does not help because the new() and start() 

operations are separated for threads (unlike futures, where they are integrated)
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1.  // Start of main thread 

2.  sum1 = 0; sum2 = 0; // sum1 & sum2 are static fields 
3.  Thread t1 = new Thread(() -> { 

4.      // Child task computes sum of lower half of array 
5.      for(int i=0; i < X.length/2; i++) sum1 += X[i];  

6.    });  
7.  t1.start(); 

8.  // Parent task computes sum of upper half of array 
9.  for(int i=X.length/2; i < X.length; i++) sum2 += X[i]; 

10. // Parent task waits for child task to complete (join) 
11. t1.join(); 

12. return sum1 + sum2;   

Two-way Parallel Array Sum  
using Java Threads
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1.  // Start of Task T0 (main program) 

2.  sum1 = 0; sum2 = 0; // sum1 & sum2 are static fields 
3.  finish(() -> { 

4.    async(() -> { 
5.      // Child task computes sum of lower half of array 

6.      for(int i=0; i < X.length/2; i++) sum1 += X[i];  
7.    });   

8.    // Parent task computes sum of upper half of array 
9.    for(int i=X.length/2; i < X.length; i++) sum2 += X[i]; 

10. }); 
11. // Parent task waits for child task to complete (join) 

12. return sum1 + sum2;   

Compare with Two-way Parallel Array Sum  
using HJ-Lib’s finish & async API’s
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HJlib runtime uses Java threads as workers

• HJlib runtime creates a small number of worker threads in a thread pool, typically one per core 

• Workers push async’s/continuations into a logical work queue 

• when an async operation is performed 

• when an end-finish operation is reached 

• Workers pull task/continuation work item when they are idle
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Objects and Locks in Java — synchronized statements and methods

• Every Java object has an associated lock acquired via: 
— synchronized statements 
–   synchronized( foo ) { // acquire foo’s lock 

   // execute code while holding foo’s lock 
} // release foo’s lock 

— synchronized methods 
–  public synchronized void op1() { // acquire ‘this‘ lock 

   // execute method while holding ‘this’ lock 
} // release ‘this’ lock 

• Java language does not enforce any relationship between the object used for locking and objects 
accessed in isolated code 
— If same object is used for locking and data access, then the object behaves like a monitor 

• Locking and unlocking are automatic 
— Locks are released when a synchronized block exits 

• By normal means: end of block reached, return, break 
• When an exception is thrown and not caught
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Locking guarantees in Java

• It is preferable to use java.util.concurrent.atomic or HJlib isolated constructs, 
since they cannot deadlock 

• Locks are needed for more general cases. Basic idea is for JVM to implement 
synchronized(a) <stmt> as follows: 

1. Acquire lock for object a 
2. Execute <stmt> 
3. Release lock for object a 

• The responsibility for ensuring that the choice of locks correctly implements 
the semantics of isolation lies with the programmer.   

• The main guarantee provided by locks is that only one thread can hold a given 
lock at a time, and the thread is blocked when acquiring a lock if the lock is 
unavailable.
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Deadlock example with Java synchronized statement

• The code below can deadlock if leftHand() and rightHand() are called concurrently from 
different threads 

— Because the locks are not acquired in the same order 
  
 public class ObviousDeadlock { 
    . . . 
    public void leftHand() { 
      synchronized(lock1) { 
        synchronized(lock2) { 
          for (int i=0; i<10000; i++)  
             sum += random.nextInt(100); 
        } 
      } 
    } 
 }
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    public void rightHand() { 
      synchronized(lock2) { 
        synchronized(lock1) { 
          for (int i=0; i<10000; i++)  
            sum += random.nextInt(100); 
        } 
      } 
    } 
 }
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Deadlock avoidance in HJ with object-based isolation

• HJ implementation ensures that all locks are acquired in the same order 

• ==> no deadlock 
  

 public class ObviousDeadlock { 
    . . . 
    public void leftHand() { 
      isolated(lock1,lock2) { 
        for (int i=0; i<10000; i++)  
           sum += random.nextInt(100); 
      } 
    } 
 }
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    public void rightHand() { 
      isolated(lock2, lock1) { 
        for (int i=0; i<10000; i++)  
          sum += random.nextInt(100); 
      } 
    } 
 }
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Dynamic Order Deadlocks
• There are even more subtle ways for threads to deadlock due to inconsistent lock ordering 

— Consider a method to transfer a balance from one account to another: 
public class SubtleDeadlock { 
       public void transferFunds(Account from,  
                                 Account to,  
                                 int amount) { 
           synchronized (from) { 
               synchronized (to) { 
                   from.subtractFromBalance(amount); 
                   to.addToBalance(amount); 
               } 
           } 
       } 
   } 

— What if one thread tries to transfer from A to B while another tries to transfer from B to A ? 
Inconsistent lock order again – Deadlock!
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Avoiding Dynamic Order Deadlocks
• The solution is to induce a lock ordering 
— Here, uses an existing unique numeric key, acctId, to establish an order 

public class SafeTransfer { 

       public void transferFunds(Account from, Account to, int amount) { 
          Account firstLock, secondLock; 

        if (fromAccount.acctId == toAccount.acctId) 
            throw new Exception(“Cannot self-transfer”); 
        else if (fromAccount.acctId < toAccount.acctId) { 
            firstLock = fromAccount; 
            secondLock = toAccount; 
        } 
        else { 
            firstLock = toAccount; 
            secondLock = fromAccount; 
        } 
        synchronized (firstLock) { 

             synchronized (secondLock) { 

                from.subtractFromBalance(amount); 
                to.addToBalance(amount); 

             } 
          } 

       } 
  }
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Java’s Object Locks are Reentrant
• Locks are granted on a per-thread basis 

— Called reentrant or recursive locks 
— Promotes object-oriented concurrent code 

• A synchronized block means execution of this code requires the current thread to hold this lock 
— If it does — fine 
— If it doesn’t — then acquire the lock 

• Reentrancy means that recursive methods,  invocation of super methods, or local callbacks, don’t deadlock 
   public class Widget { 

      public synchronized void doSomething() { ... } 

   } 

   public class LoggingWidget extends Widget { 

      public synchronized void doSomething() { 

          Logger.log(this + ": calling doSomething()"); 

          super.doSomething();  // Doesn't deadlock!  
    } 
 }
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