Lecture 27: Safety and Liveness Properties, Java Synchronizers, Dining Philosophers Problem

Mack Joyner and Zoran Budimlić
{mjoyner, zoran}@rice.edu

http://comp322.rice.edu
Rewrite the transferFunds() method below to use j.u.c. locks with calls to tryLock (see slide 8) instead of synchronized. Your goal is to write a correct implementation that never deadlocks, unlike the buggy version below (which can deadlock). Assume that each Account object already contains a reference to a ReentrantLock object dedicated to that object e.g., from.lock() returns the lock for the from object. Sketch your answer below using pseudocode.

1. public void transferFunds(Account from, Account to, int amount) {
2. while (true) {
3. // assume that trylock() does not throw an exception
4. boolean fromFlag = from.lock().tryLock();
5. if (!fromFlag) continue;
6. boolean toFlag = to.lock().tryLock();
7. if (!toFlag) { from.lock().unlock(); continue; }
8. try {
9. from.subtractFromBalance(amount);
10. to.addToBalance(amount); break;
11. } finally {
12. from.lock().unlock(); to.lock().unlock();
13. } // while
14. } // while
15. }
Worksheet #26b solution:
Linearizability of method calls on a concurrent object

Is this a linearizable execution for a FIFO queue, q?

<table>
<thead>
<tr>
<th>Time</th>
<th>Task A</th>
<th>Task B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Invoke q.enq(x)</td>
<td>Invoke q.enq(y)</td>
</tr>
<tr>
<td>1</td>
<td>Return from q.enq(x)</td>
<td>Work on q.enq(y)</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Return from q.enq(y)</td>
</tr>
<tr>
<td>3</td>
<td>Invoke q.deq()</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Work on q.deq()</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Return y from q.deq()</td>
<td></td>
</tr>
</tbody>
</table>

No! q.enq(x) must precede q.enq(y) in all linear sequences of method calls invoked on q. It is illegal for the q.deq() operation to return y.
Outline

- Safety and Liveness
- Java Synchronizers: Semaphores
- Dining Philosophers Problem
Safety vs. Liveness

- In a concurrent setting, we need to specify both the safety and the liveness properties of an object.
- Need a way to define:
 - Safety: when an implementation is functionally correct (does not produce a wrong answer).
 - Liveness: the conditions under which it guarantees progress (completes execution successfully).

Examples of safety:
- Data race freedom is a desirable safety property for parallel programs (Module 1).
- Linearizability is a desirable safety property for concurrent objects (Module 2).
Liveness

• Liveness = a program’s ability to make progress in a timely manner

• Termination (“no infinite loop”) is not necessarily a requirement for liveness
 • some applications are designed to be non-terminating

• Different levels of liveness guarantees (from weaker to stronger) for tasks/threads in a concurrent program
 1. Deadlock freedom
 2. Livelock freedom
 3. Starvation freedom
 4. Bounded wait
1. Deadlock-Free Parallel Program Executions

- A parallel program execution is *deadlock-free* if no task’s execution remains incomplete due to it being blocked awaiting some condition.

- Example of a program with a deadlocking execution

  ```java
  // Thread T1
  public void leftHand() {
    synchronized(obj1) {
      synchronized(obj2) {
        // work with obj1 & obj2
        ...
      }
    }
  }
  
  // Thread T2
  public void leftHand() {
    synchronized(obj2) {
      synchronized(obj1) {
        // work with obj2 & obj1
        ...
      }
    }
  }
  ```

- In this case, Task1 and Task2 are in a deadlock cycle.
 - Three constructs that can lead to deadlock in HJlib: async await, finish w/ actors, explicit phaser wait (instead of next)
 - There are many constructs that can lead to deadlock cycles in other programming models (e.g., thread join, synchronized, locks in Java)
2. Livelock-Free Parallel Program Executions

- A parallel program execution exhibits *livelock* if two or more tasks repeat the same interactions without making any progress (special case of nontermination).

- Livelock example:

```java
// Task T1
incrToTwo(AtomicInteger ai) {
    // increment ai till it reaches 2
    while (ai.incrementAndGet() < 2);
}

// Task T2
decrToNegTwo(AtomicInteger ai) {
    // decrement ai till it reaches -2
    while (a.decrementAndGet() > -2);
}
```

- Many well-intended approaches to avoid deadlock result in livelock instead.

- Any HJlib program that uses only Module 1 features, and is data-race-free, is guaranteed to be livelock-free (may be nonterminating in a single task, however).
3. Starvation-Free Parallel Program Executions

- A parallel program execution exhibits *starvation* if some task is repeatedly denied the opportunity to make progress
 - Starvation-freedom is sometimes referred to as “lock-out freedom”
 - Starvation is possible in HJ programs, since all tasks in the same program are assumed to be cooperating, rather than competing
 - If starvation occurs in a deadlock-free HJ program, the “equivalent” sequential program must be non-terminating (infinite loop)

- Classic source of starvation for OS threads: “Priority Inversion”
 - Thread A is at high priority, waiting for result or resource from Thread C at low priority
 - Thread B at intermediate priority is CPU-bound
 - Thread C never runs (because its priority is lower than B’s priority), hence thread A never runs
 - Fix: when a high priority thread waits for a low priority thread, boost the priority of the low-priority thread
4. Bounded Wait

- A parallel program execution exhibits bounded wait if each task requesting a resource should only have to wait for a bounded number of other tasks to “cut in line” i.e., to gain access to the resource after its request has been registered.

- If bound = 0, then the program execution is fair
Outline

• Safety and Liveness

• **Java Synchronizers: Semaphores**

• Dining Philosophers Problem
Key Functional Groups in java.util.concurrent (j.u.c.)

- Atomic variables
 - The key to writing lock-free algorithms
- Concurrent Collections:
 - Queues, blocking queues, concurrent hash map, ...
 - Data structures designed for concurrent environments
- Locks and Conditions
 - More flexible synchronization control
 - Read/write locks
- Executors, Thread pools and Futures
 - Execution frameworks for asynchronous tasking
- Synchronizers: Semaphore, Latch, Barrier, Exchanger
 - Ready made tools for thread coordination
Semaphores

• Conceptually serve as “permit” holders
 — Construct with an initial number of permits
 — acquire(): waits for permit to be available, then “takes” one, i.e., decrements the count of available permits
 — release(): “returns” a permit, i.e., increments the count of available permits
 — But no actual permits change hands
 — The semaphore just maintains the current count
 — Thread performing release() can be different from the thread performing acquire()

• “fair” variant hands out permits in FIFO order

• Useful for managing bounded access to a shared resource
Bounded Blocking Concurrent List using Semaphores

1. public class BoundedBlockingList {
2. final int capacity;
3. final ConcurrentLinkedList list = new ConcurrentLinkedList();
4. final Semaphore sem;
5. public BoundedBlockingList(int capacity) {
6. this.capacity = capacity;
7. sem = new Semaphore(capacity);
8. }
9. public void addFirst(Object x) throws InterruptedException {
10. sem.acquire(); // blocks until a permit is available
11. try { list.addFirst(x); }
12. catch (Throwable t){ sem.release(); rethrow(t); } // only performed on exception
13. }
14. public boolean remove(Object x) {
15. if (list.remove(x)) { sem.release(); return true; }
16. return false;
17. }
18. ... } // BoundedBlockingList
Outline

• Safety and Liveness

• Java Synchronizers: Semaphores

• Dining Philosophers Problem
 — Acknowledgments
 – CMSC 330 course notes, U. Maryland
 – Dave Johnson (COMP 421 instructor)
The Dining Philosophers Problem

Constraints
- Five philosophers either eat or think
- They must have two forks to eat (chopsticks are a better motivation!)
- Can only use forks on either side of their plate
- No talking permitted

Goals
- Progress guarantees
 - Deadlock freedom
 - Livelock freedom
 - Starvation freedom
 - Maximum concurrency (no one should starve if there are available forks for them)
General Structure of Dining Philosophers Problem: PseudoCode

1. int numPhilosophers = 5;
2. int numForks = numPhilosophers;
3. Fork[] fork = ... ; // Initialize array of forks
4. forall(point [p] : [0:numPhilosophers-1]) {
5. while(true) {
6. Think ;
7. Acquire forks;
8. // Left fork = fork[p]
9. // Right fork = fork[(p-1)%numForks]
10. Eat ;
11. } // while
12.} // forall
Solution 1: using Java’s synchronized statement

1. int numPhilosophers = 5;
2. int numForks = numPhilosophers;
3. Fork[] fork = ... // Initialize array of forks
4. forall(point [p] : [0:numPhilosophers-1]) {
5. while(true) {
6. Think;
7. synchronized(fork[p])
8. synchronized(fork[(p-1)%numForks]) {
9. Eat;
10. }
11. }
12. } // while
13.} // forall
Solution 2: using Java’s Lock library

1. int numPhilosophers = 5;
2. int numForks = numPhilosophers;
3. Fork[] fork = ... ; // Initialize array of forks
4. forall(point [p] : [0:numPhilosophers-1]) {
5. while(true) {
6. Think ;
7. if (!fork[p].lock.tryLock()) continue;
8. if (!fork[(p-1)%numForks].lock.tryLock()) {
9. fork[p].lock.unlock(); continue;
10. }
11. Eat ;
12. fork[p].lock.unlock();fork[(p-1)%numForks].lock.unlock();
13. } // while
14.} // forall
Solution 3: using HJ’s isolated statement

1. int numPhilosophers = 5;
2. int numForks = numPhilosophers;
3. Fork[] fork = ... ; // Initialize array of forks
4. forall(point [p] : [0:numPhilosophers-1]) {
5. while(true) {
6. Think ;
7. isolated {
8. Pick up left and right forks;
9. Eat ;
10. }
11. } // while
12.} // forall
Solution 4: using HJ’s object-based isolation

1. `int numPhilosophers = 5;`
2. `int numForks = numPhilosophers;`
3. `Fork[] fork = ... ; // Initialize array of forks`
4. `forall(point [p] : [0:numPhilosophers-1]) {`
5. `while(true) {`
6. `Think ;`
7. `isolated(fork[p], fork[(p-1)%numForks]) {`
8. `Eat ;`
9. `}`
10. `} // while`
11. `} // forall`
Solution 5: using Java’s Semaphores

1. int numPhilosophers = 5;
2. int numForks = numPhilosophers;
3. Fork[] fork = ... ; // Initialize array of forks
4. Semaphore table = new Semaphore(3, true);
5. for (i=0;i<numForks;i++) fork[i].sem = new Semaphore(1, true);
6. forall(point [p] : [0:numPhilosophers-1]) {
 7. while(true) {
 8. Think;
 9. table.acquire(); // At most 3 philosophers at table, assume optimal table assignment
 10. fork[p].sem.acquire(); // Acquire left fork
 11. fork[(p-1)%numForks].sem.acquire(); // Acquire right fork
 12. Eat;
 13. fork[p].sem.release(); fork[(p-1)%numForks].sem.release();
 14. table.release();
 15. } // while
 16.} // forall

“true” parameter creates a semaphore that guarantees fairness