
COMP 322: Fundamentals of Parallel Programming

Lecture 33: Combining Distributed and Multithreaded Parallelism
(Hybrid Parallelism)

Zoran Budimlić and Mack Joyner
{zoran, mjoyner}@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 33 6 April 2018

Worksheet #32 solution: UPC data distributions

1. shared int a[100],b[100], c[100];
2. int i;
3. upc_forall (i=0; i<100; i++; (i*THREADS)/100)
4. a[i] = b[i] * c[i];

�2

In the following example (which is similar to slide 17, but without the blocking), assume that each UPC array is distributed by default
across threads with a cyclic distribution. In the space below, a) identify an iteration of the upc_forall construct for which all array
accesses are local, and b) an iteration for which all array accesses are non-local (remote). You can assume any values for
THREADS in the 2…99 range that you choose for parts a) and b). Explain your answer in each case.

Note that each shared array’s distribution always starts with the first element assigned to thread 0 (not where the previous array
may have ended).

Solution:
• Iteration 0 has affinity with thread 0, and accesses a[0], b[0], c[0], all of which are located locally at thread 0
• Iteration 1 has affinity with thread 0, and accesses a[1], b[1], c[1], all of which are located remotely at thread 1

0 1 2 3 4 5 6 . . .index

index owner in
2-thread case

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Processes and Threads (recap from Lecture 18)

• A Java Virtual Machine (JVM) executes
in a single process with multiple threads

• Threads associated with the same
process can share the same data

• Processes are the fundamental building
block for distributed applications, since a
process has to be confined to a single
node

�3

T1!

T2!
T4!

T5! T3!

shared code, data!
and process context!

Figure source: COMP 321 lecture on Concurrency (Alan Cox)

• Need to create multiple processes to use multiple nodes
• Also need to create multiple threads within a process to use multiple cores

within a node
• May also create more than one process in a node

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Using multiple threads/processes per node

• Advantages of using multiple threads in a process
—Efficiency: more efficient utilization of shared resources compared to one thread per

process
—Responsiveness: other threads can respond to requests when one thread is blocked e.g.,

due to an I/O request
—Performance: increased throughput, since multiple threads can execute on multiple cores

• Advantages of using multiple processes in a node (each process with multiple threads)
—Responsiveness: other processes can respond to requests when one process is blocked

e.g., due to garbage collection
—Scalability: there is a “sweet spot” for the ideal number of threads to use in a process

(which is often less than the number of cores); using additional processes can then help
increase performance

—Availability/resilience: other processes can respond to requests on node when one
process goes down

�4

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Example of a Multithreaded Server
1. public void run(final ServerSocket socket, final File rootDir) throws IOException {

2. /*

3. * Enter a spin loop for handling client requests to the provided

4. * ServerSocket object.

5. */

6. while (true) {

7.

8. // TODO Use socket.accept to get a Socket object

9. Socket s = socket.accept();

10.

11. Thread thread = new Thread(new RequestHandler(s, rootDir));

12. thread.start();

13. }

14. }

�5

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

MPI and Threads

• MPI describes parallelism between processes

• Thread parallelism provides a shared-memory model within a process

• MPI-2 defines four levels of thread safety
—MPI_THREAD_SINGLE: only one thread
—MPI_THREAD_FUNNELED: only one thread that makes MPI calls
—MPI_THREAD_SERIALIZED: only one thread at a time makes MPI calls
—MPI_THREAD_MULTIPLE: any thread can make MPI calls at any time

• User calls MPI_Init_thread to indicate the level of thread support required;
implementation returns the level supported

�6

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

For MPI_THREAD_MULTIPLE

• When multiple threads make MPI calls concurrently, the outcome will be as if
the calls executed sequentially in some (any) order

• Blocking MPI calls will block only the calling thread and will not prevent other
threads from running or executing MPI functions

• It is the user's responsibility to prevent races when threads in the same
application post conflicting MPI calls

• User must ensure that collective operations on the same communicator,
window, or file handle are correctly ordered among threads

• Often simpler to limit all MPI calls to a single thread …

�7

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Recap of Actor Model

• Logical active thread with isolated data;
all inter-actor interactions must be
performed via messages

• Inherently concurrent (alternative to
transactions)

• Lightweight

• Highly scalable

• Promising for both manycore and
distributed parallelism

• HJlib extends the actor model by
integrating it with task parallelism e.g.,
by supporting finish construct with
actors

�8

Source : S. Imam and V. Sarkar. Integrating Task Parallelism with
Actors, OOPSLA ’12

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Selector Model

• Extend actors with multiple
‘guarded’ mailboxes

• Actor can enable / disable
mailboxes to implement different
protocols

• Easy synchronization and co-
ordination between multiple
selectors e.g.,
• Synchronous request-reply
• Join Patterns

• Modularity and Data locality of
Actor model preserved

�9

Source: S. Imam and V. Sarkar. ,Selectors : Actors with multiple
guarded mailboxes, AGERE’14

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Synchronous Request-Response Pattern
1. Requester sends a message to a replier system
2. Replier eventually receives and processes the request
3. Replier returns a message in response
4. Requester can only make further progress after receiving response (must “stash” all intervening

messages

�10

Requester Replier

Stash these messages

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Synchronous Request/Response: Selector-based Solution
1. Two mailboxes

1.one to receive regular messages
2.one to receive synchronous response messages

• Whenever expecting a synchronous response
• disable the regular mailbox
• ensures next message processed is from reply mailbox

�11

Requester Replier

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Distributed selector system

Se
rv

ice

Ac
to

rs

U
se

r
Ru

nt
im

e

�12

JVM JVM JVM JVM

Master
Place

U
se

r-l
ev

el
Se

lec
to

rs

Source: A Distributed Selectors Runtime System for Java Applications.
Arghya Chatterjee, Branko Gvoka, Bing Xue, Zoran Budimlić, Shams Imam, Vivek Sarkar. , PPPJ’16.

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Automatic bootstrap and initialization

Configuration file• No configuration file ➔ program
runs in shared memory

• Configuration file ➔ program
runs in distributed mode
(without any changes in the
source code!)

• Master place — startup
confirmation from all remote
places and executes user code

• Users can start selectors
remotely

�13

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Distributed selector system: Message routing
Se

rv
ice

Ac

to
rs

U
se

r
Ru

nt
im

e

�14

JVM JVM JVM JVM

M3 : S3 —> S2

M5 : S5 —> S1

M3 M5

U
se

r-l
ev

el
Se

lec
to

rs

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Example of Distributed Selectors:
Sieve of Eratosthenes

�15

Node 0 Node 1 Node 2

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Distributed Reactive Programming

• Reactive programming model supports both push (as in actors) and pull (as in
streams) models

• Four interfaces available in Java
—Flow.Publisher
—Flow.Subscriber
—Flow.Process
—Flow.Subscription

�16

Publisher Subscriber

PUSH

PULL

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Sample Publisher
// Source: https://community.oracle.com/docs/DOC-1006738

01. import java.util.concurrent.SubmissionPublisher;  
02. ...  
03. //Create Publisher  
04. SubmissionPublisher<String> publisher =
 new SubmissionPublisher<>();
05.
06. //Register Subscriber  
07. MySubscriber<String> subscriber = new MySubscriber<>();  
08. publisher.subscribe(subscriber);  
09.  
10. //Publish items  
11. System.out.println("Publishing Items...");  
12. String[] items = {"1", "x", "2", "x", "3", "x"};  
13. Arrays.asList(items).stream().forEach(i ->
 publisher.submit(i));
14. publisher.close();

�17

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Sample Subscriber
// Source: https://community.oracle.com/docs/DOC-1006738

01. import java.util.concurrent.Flow.*;  
02. ...  
03.  
04. public class MySubscriber<T> implements Subscriber<T> {
05. private Subscription subscription;
06.  
07. @Override  
08. public void onSubscribe(Subscription subscription) {  
09. this.subscription = subscription;  
10. subscription.request(1); //a value of Long.MAX_VALUE may be considered as effectively unbounded
11. }  
12.  
13. @Override  
14. public void onNext(T item) {  
15. System.out.println("Got : " + item);  
16. subscription.request(1); //a value of Long.MAX_VALUE may be considered as effectively unbounded
17. }  
18.  
19. @Override  
20. public void onError(Throwable t) {  
21. t.printStackTrace();  
22. }  
23.  
24. @Override  
25. public void onComplete() {  
26. System.out.println("Done");  
27. }  
28. }

�18

