Worksheet \#6: Associativity and Commutativity

Name:
NetID: \qquad
Recap:
A binary function f is associative if $f(f(x, y), z)=f(x, f(y, z))$.
A binary function f is commutative if $f(x, y)=f(y, x)$.
Worksheet problems:

1) Claim: a Finish Accumulator (FA) can only be used with operators that are associative and commutative. Why? What can go wrong with accumulators if the operator is non-associative or non-commutative?
2) For each of the following functions, indicate if it is associative and/or commutative.
a) $f(x, y)=x+y$, for integers x, y
b) $g(x, y)=(x+y) / 2$, for integers x, y
c) $h(s 1, s 2)=$ concat(s1, s2) for strings $s 1$, s2, e.g., $h(" a b ", " c d ")=$ "abcd"
