
COMP 322: Fundamentals of Parallel Programming

Lecture 2: Computation Graphs, Ideal Parallelism

Zoran Budimlić and Mack Joyner
{zoran, mjoyner}@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 2 9 January 2019

COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)

Async and Finish Statements for Task Creation and Termination
async S

• Creates a new child task
that executes statement S

�2

finish S
! Execute S, but wait until

all asyncs in S’s scope
have terminated.

// T0(Parent task)
STMT0;
finish { //Begin finish
 async {
 STMT1; //T1(Child task)
 }
 STMT2; //Continue in T0

} //End finish (wait for T1)
STMT3; //Continue in T0

STMT2

fork

STMT1

join

T1 T0

STMT3

STMT0

1. finish {

2. async { Watch COMP 322 video for topic 1.2 by 1pm on Wednesday

3. Watch COMP 322 video for topic 1.3 by 1pm on Wednesday

4. }

5. async Make your bed

6. async { Clean out your fridge

7. Buy food supplies and store them in fridge }

8. finish { async Run load 1 in washer

9. async Run load 2 in washer }

10. async Run load 1 in dryer

11. async Run load 2 in dryer

12. async Call your family

13. }

14. Post on Facebook that you’re done with all your tasks!

COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)

One possible solution to Problem #1 in Worksheet 1
(without statement reordering)

�3

1. finish {

2. async Call your family

3. async Make your bed

4. async { Clean out your fridge

5. Buy food supplies and store them in fridge }

6. async { Run load 1 in washer

7. Run load 1 in dryer }

8. async { Run load 2 in washer

9. Run load 2 in dryer }

10. Watch COMP 322 video for topic 1.2 by 1pm on Wednesday

11. Watch COMP 322 video for topic 1.3 by 1pm on Wednesday

12. }

13. Post on Facebook that you’re done with all your tasks!

COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)

Another possible solution to Problem #1 in Worksheet 1
(with statement reordering)

�4

1.finish {

2. for (int i = 0 ; i < N ; i++)

3. for (int j = 0 ; j < N ; j++)

4. for (int k = 0 ; k < N ; k++)

5. async {

6. C[i][j] = C[i][j] + A[i][k] * B[k][j];

7. } // async

8.} // finish

COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)

Is this a correct solution for Problem #2 in
Worksheet 1?

�5

“Data race” bug! Reads and writes can occur in parallel on the same C[i][j] location!

1.finish {

2. for (int i = 0 ; i < N ; i++)

3. for (int j = 0 ; j < N ; j++)

4. for (int k = 0 ; k < N ; k++)

5. async {

6. C[i][j] = C[i][j] + A[i][k] * B[k][j];

7. } // async

8.} // finish

COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)

What order of reads/writes at location C[0][0] causes an incorrect
result? Assume N is 2

�6

W1 R1 W2 R2

Run in Parallel

C[0][0] = C[0][0] + A[0][0] * B[0][0]; C[0][0] = C[0][0] + A[0][1] * B[1][0];

1.finish {

2. for (int i = 0 ; i < N ; i++)

3. for (int j = 0 ; j < N ; j++)

4. async {

5. for (int k = 0 ; k < N ; k++)

6. C[i][j] = C[i][j] + A[i][k] * B[k][j];

7. } // async

8.} // finish

COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)

One Possible Solution to Problem #2 in Worksheet 1
(Parallel Matrix Multiplication)

�7

 This program generates N2 parallel async tasks, one to compute each C[i][j] element
of the output array. Additional parallelism can be exploited within the inner k loop,

but that would require more changes than inserting async & finish.

1.finish {

2. for (int i = 0 ; i < N ; i++)

3. async for (int j = 0 ; j < N ; j++)

4. async {

5. for (int k = 0 ; k < N ; k++)

6. C[i][j] = C[i][j] + A[i][k] * B[k][j];

7. } // async

8. } // finish

COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)

Another Possible Solution to Problem #2 in Worksheet 1
(Parallel Matrix Multiplication)

�8

 This program generates N + N2 parallel async tasks, but generates the same amount of
parallelism among instances of statement S6 as before.

1. finish { // F1

2. async A;

3. finish { // F2

4. async B1;

5. async B2;

6. } // F2

7. B3;

8. } // F1

COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)

Which statements can potentially be executed
in parallel with each other?

�9

F1-endF1-start F2-start F2-end

A

B1

B2

B3

Computation Graph

spawn join

continue

Key idea: If two statements, X and Y,
have no path of directed edges from
one to the other, then they can run in
parallel with each other.

COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)

Computation Graphs

• A Computation Graph (CG) captures the dynamic execution of a parallel program, for
a specific input

• CG nodes are “steps” in the program’s execution
— A step is a sequential subcomputation without any async, begin-finish or end-finish

operations

• CG edges represent ordering constraints
— “Continue” edges define sequencing of steps within a task
— “Spawn” edges connect parent tasks to child async tasks
— “Join” edges connect the end of each async task to its IEF’s end-finish operations

• All computation graphs must be acyclic
—It is not possible for a node to depend on itself

• Computation graphs are examples of “directed acyclic graphs” (DAGs)

�10

COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)

Complexity Measures for Computation Graphs

Define

• TIME(N) = execution time of node N

• WORK(G) = sum of TIME(N), for all nodes N in CG G
—WORK(G) is the total work to be performed in G

• CPL(G) = length of a longest path in CG G, when adding up execution times of
all nodes in the path
—Such paths are called critical paths
—CPL(G) is the length of these paths (critical path length, also referred to as

the span of the graph)
—CPL(G) is also the shortest possible execution time for the computation

graph

�11

COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)

Ideal Parallelism

• Define ideal parallelism of
Computation G Graph as the ratio,
WORK(G)/CPL(G)

• Ideal Parallelism only depends
on the computation graph, and is
the speedup that you can obtain
with an unbounded number of
processors

�12

1

1

1

4 1 4

1 1 1 1

31 1 1

1 1

1

1
Example:
WORK(G) = 26
CPL(G) = 11
Ideal Parallelism = WORK(G)/CPL(G) = 26/11 ~ 2.36

COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)

Which Computation Graph has more ideal parallelism?

Assume that all nodes have TIME = 1, so WORK = 10 for both graphs.

�13

Computation Graph 1 Computation Graph 2

COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)

Data Races

 A data race occurs on location L in a program execution with computation
graph CG if there exist steps (nodes) S1 and S2 in CG such that:

1. S1 does not depend on S2 and S2 does not depend on S1, i.e., S1 and S2 can
potentially execute in parallel, and

2. Both S1 and S2 read or write L, and at least one of the accesses is a write.

• A data-race is usually considered an error. The result of a read operation in a
data race is undefined. The result of a write operation is undefined if there are
two or more writes to the same location.

• Note that our definition of data race includes the case that both S1 and S2
write the same value in location L, even if that may not be considered an error.

• Above definition includes all “potential” data races i.e., we consider it to be a
data race even if S1 and S2 end up executing on the same processor.

�14

1.finish {

2. for (int i = 0 ; i < N ; i++)

3. for (int j = 0 ; j < N ; j++)

4. for (int k = 0 ; k < N ; k++)

5. async {

6. C[i][j] = C[i][j] + A[i][k] * B[k][j];

7. } // async

8.} // finish

COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)

Data Race Example: Buggy Matrix Multiply with N = 2

�15

No directed edge in computation graph between S6(i=0,j=0,k=0) and
S6(i=0,j=0,k=1), but both read and write C[0][0].

COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)

Announcements & Reminders

• IMPORTANT:
—Bring your laptop to tomorrow’s lab at 4pm on Thursday (Herring 100)
—Watch videos for topic 1.4 for next lecture on Friday

• HW1 will be assigned today and be due on Jan 23rd

• Each quiz (to be taken online on Canvas) will be due on the Friday after the unit
is covered in class. The first quiz for Unit 1 (topics 1.1 - 1.5) will be assigned
on next Wednesday and is due by Jan 25.

• See course web site for syllabus, work assignments, due dates, …

• http://comp322.rice.edu

• Contact instructors with special registration form if need to convert your
registration from ELEC 323 to COMP 322, or vice versa

�16

