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One Possible Solution to Worksheet 2 
(Reverse Engineering a Computation Graph)
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1.A(); 

2.finish { // F1 

3.  async D(); 

4.  B(); 

5.  E(); 

6.  finish { // F2 

7.    async H(); 

8.    F(); 

9.  } // F2 

10. G(); 

11.} // F1 

12.C();

Observations: 
• Any node with out-degree > 1 must be an 

async (must have an outgoing spawn edge) 
• Any node with in-degree  > 1 must be an end-

finish (must have an incoming join edge 
• Adding or removing transitive edges does not 

impact ordering constraints
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Ordering Constraints and Transitive Edges 
in a Computation Graph

• The primary purpose of a computation graph is to determine if an 
ordering constraint exists between two steps (nodes) 
—Observation: Node A must be performed before node B if there 

is a path of directed edges from A and B 

• An edge, X →Y, in a computation graph  is said to be transitive if 
there exists a path of directed edges from X to Y that does not 
include the X →Y edge 
—Observation: Adding or removing a transitive edge does not 

change the ordering constraints in a computation graph
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Ideal Parallelism (Recap)

• Define ideal parallelism of 
Computation Graph G as the 
ratio, WORK(G)/CPL(G) 

• Ideal Parallelism only 
depends on the computation 
graph, and is the speedup that 
you can obtain with an 
unbounded number of 
processors
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Example: 
WORK(G) = 26 
CPL(G) = 11 
Ideal Parallelism = WORK(G)/CPL(G) = 26/11 ~ 2.36 



1.  finish { // F1 

2.    async A; // Boil water & pasta (10) 

3.    finish { // F2 

4.      async B1; // Chop veggies (5) 

5.      async B2; // Brown meat (10) 

6.    } // F2 

7.    B3; // Make pasta sauce (5) 

8.  } // F1
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What is the critical path length of this 
parallel computation?
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Step A

Step B1 Step B2

Step B3



COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)

• Computation graphs are referred to as “Gantt charts” in project 
management 

• Sample project for preparing a printed document 
—Source: http://www.gantt.com/creating-gantt-charts.htm 
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Computation Graphs are used in Project 
Scheduling as well

http://www.gantt.com/creating-gantt-charts.htm
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Scheduling of a Computation Graph on 
a fixed number of processors: Example

• node 
label = 
time(N), 
for all 
nodes 
N in the 
graph
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A
Start 
time

Proc 1 Proc 2 Proc 3

0 A
1 B
2 C N
3 D N I
4 D N J
5 D N K
6 D Q L
7 E R M
8 F R O
9 G R P
10 H
11 Completion time = 11
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NOTE: this schedule achieved a completion 
time of 11.  Can we do better?
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Scheduling of a Computation Graph on 
a fixed number of processors, P

• Assume that node N takes TIME(N) regardless of which processor it 
executes on, and that there is no overhead for creating parallel tasks 

• A schedule specifies the following for each node 
—START(N) = start time 
—PROC(N) = index of processor in range 1...P 

such that 
—START(i) + TIME(i) <= START(j), for all CG edges from i to j 

(Precedence constraint) 
—A node occupies consecutive time slots in a processor (Non-

preemption constraint) 
—All nodes assigned to the same processor occupy distinct time 

slots (Resource constraint)
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Greedy Schedule
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• A greedy schedule is one that never forces a processor to be idle 
when one or more nodes are ready for execution  
• A node is ready for execution if all its predecessors have been 
executed 
• Observations 

—T1 = WORK(G), for all greedy schedules 
—T∞ = CPL(G), for all greedy schedules 

• where TP(S) = execution time of schedule S for computation graph 
G on P processors 
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Lower Bounds on Execution Time of 
Schedules

• Let TP = execution time of a schedule for 
computation graph G on P processors 
—TP  can be different for different schedules, for 

same values of G and P 
• Lower bounds for all greedy schedules 

—Capacity bound: TP  ≥ WORK(G)/P 
—Critical path bound: TP  ≥ CPL(G) 

• Putting them together 
—TP  ≥ max(WORK(G)/P, CPL(G))
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Upper Bound on Execution Time of 
Greedy Schedules 
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Proof sketch: 
Define a time step to be complete if P 

processors are scheduled at that 
time, or incomplete otherwise 

# complete time steps ≤ WORK(G)/P 

# incomplete time steps ≤ CPL(G) 

Theorem [Graham ’66].  
Any greedy scheduler achieves 

TP ≤ WORK(G)/P + CPL(G)

Start 
time

Proc 
1

Proc 
2

Proc 
3

0 A
1 B
2 C N
3 D N I
4 D N J
5 D N K
6 D Q L
7 E R M
8 F R O
9 G R P
10 H
11
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Bounding the performance of Greedy 
Schedulers

Combine lower and upper bounds to get  
max(WORK(G)/P, CPL(G)) ≤ TP ≤ WORK(G)/P + CPL(G) 

Corollary 1: Any greedy scheduler achieves execution time TP 
that is within a factor of 2 of the optimal time (since max(a,b) 
and (a+b) are within a factor of 2 of each other, for any a ≥ 0,b 
≥ 0 ). 
Corollary 2:  Lower and upper bounds approach the same 
value whenever  

• There’s lots of parallelism, WORK(G)/CPL(G) >> P 

• Or there’s little parallelism,  WORK(G)/CPL(G) << P  
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Abstract Performance Metrics (Lab 1)
• Basic Idea 

• Count operations of interest, as in big-O analysis, to evaluate parallel algorithms 
• Abstraction ignores many overheads that occur on real systems 

• Calls to doWork() 
• Programmer inserts calls of the form, doWork(N), within a step to indicate 

abstraction execution of N application-specific abstract operation 
• e.g., in the Homework 1 programming assignment (Parallel Sort), we will 

include one call to doWork(1) in each call to compareTo(), and ignore the 
cost of everything else 

• Abstract metrics are enabled by calling HjSystemProperty.abstractMetrics.set(true) 
at start of program execution 

• If an HJ program is executed with this option, abstract metrics can be printed at end 
of program execution with calls to abstractMetrics().totalWork(), 
abstractMetrics().criticalPathLength(), and abstractMetrics().idealParallelism()
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Announcements & Reminders
• IMPORTANT:  

—Watch video & read handout for topic 1.5 for next lecture on 
Monday, Jan 14th 

• HW1 was posted on the course web site (http://comp322.rice.edu) 
on Jan 9th, and is due on Wednesday, Jan 23rd 

• See course web site for all work assignments and due dates 
• See Office Hours link on course web site for latest office hours 

schedule. 

14

http://comp322.rice.edu
https://wiki.rice.edu/confluence/display/PARPROG/322OfficeHours

