
COMP 322: Fundamentals of Parallel Programming

Lecture 3: Multiprocessor Scheduling

Mack Joyner and Zoran Budimlić
{mjoyner, zoran}@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 3
January 2019

http://comp322.rice.edu

COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)

One Possible Solution to Worksheet 2
(Reverse Engineering a Computation Graph)

2

1.A();

2.finish { // F1

3. async D();

4. B();

5. E();

6. finish { // F2

7. async H();

8. F();

9. } // F2

10. G();

11.} // F1

12.C();

Observations:
• Any node with out-degree > 1 must be an

async (must have an outgoing spawn edge)
• Any node with in-degree > 1 must be an end-

finish (must have an incoming join edge
• Adding or removing transitive edges does not

impact ordering constraints

COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)

Ordering Constraints and Transitive Edges
in a Computation Graph

• The primary purpose of a computation graph is to determine if an
ordering constraint exists between two steps (nodes)
—Observation: Node A must be performed before node B if there

is a path of directed edges from A and B

• An edge, X →Y, in a computation graph is said to be transitive if
there exists a path of directed edges from X to Y that does not
include the X →Y edge
—Observation: Adding or removing a transitive edge does not

change the ordering constraints in a computation graph

3

COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)

Ideal Parallelism (Recap)

• Define ideal parallelism of
Computation Graph G as the
ratio, WORK(G)/CPL(G)

• Ideal Parallelism only
depends on the computation
graph, and is the speedup that
you can obtain with an
unbounded number of
processors

4

1

1

1

4 1 4

1 1 1 1

31 1 1

1 1

1

1
Example:
WORK(G) = 26
CPL(G) = 11
Ideal Parallelism = WORK(G)/CPL(G) = 26/11 ~ 2.36

1. finish { // F1

2. async A; // Boil water & pasta (10)

3. finish { // F2

4. async B1; // Chop veggies (5)

5. async B2; // Brown meat (10)

6. } // F2

7. B3; // Make pasta sauce (5)

8. } // F1

COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)

What is the critical path length of this
parallel computation?

5

Step A

Step B1 Step B2

Step B3

COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)

• Computation graphs are referred to as “Gantt charts” in project
management

• Sample project for preparing a printed document
—Source: http://www.gantt.com/creating-gantt-charts.htm

6

Computation Graphs are used in Project
Scheduling as well

http://www.gantt.com/creating-gantt-charts.htm

COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)

Scheduling of a Computation Graph on
a fixed number of processors: Example

• node
label =
time(N),
for all
nodes
N in the
graph

7

1

1

1

4 41

1 1 1

31

1

1

1

1

1

1

1

A
Start
time

Proc 1 Proc 2 Proc 3

0 A
1 B
2 C N
3 D N I
4 D N J
5 D N K
6 D Q L
7 E R M
8 F R O
9 G R P
10 H
11 Completion time = 11

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

NOTE: this schedule achieved a completion
time of 11. Can we do better?

COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)

Scheduling of a Computation Graph on
a fixed number of processors, P

• Assume that node N takes TIME(N) regardless of which processor it
executes on, and that there is no overhead for creating parallel tasks

• A schedule specifies the following for each node
—START(N) = start time
—PROC(N) = index of processor in range 1...P

such that
—START(i) + TIME(i) <= START(j), for all CG edges from i to j

(Precedence constraint)
—A node occupies consecutive time slots in a processor (Non-

preemption constraint)
—All nodes assigned to the same processor occupy distinct time

slots (Resource constraint)

8

COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)

Greedy Schedule

9

• A greedy schedule is one that never forces a processor to be idle
when one or more nodes are ready for execution
• A node is ready for execution if all its predecessors have been
executed
• Observations

—T1 = WORK(G), for all greedy schedules
—T∞ = CPL(G), for all greedy schedules

• where TP(S) = execution time of schedule S for computation graph
G on P processors

COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)

Lower Bounds on Execution Time of
Schedules

• Let TP = execution time of a schedule for
computation graph G on P processors
—TP can be different for different schedules, for

same values of G and P
• Lower bounds for all greedy schedules

—Capacity bound: TP ≥ WORK(G)/P
—Critical path bound: TP ≥ CPL(G)

• Putting them together
—TP ≥ max(WORK(G)/P, CPL(G))

10

COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)

Upper Bound on Execution Time of
Greedy Schedules

11

Proof sketch:
Define a time step to be complete if P

processors are scheduled at that
time, or incomplete otherwise

complete time steps ≤ WORK(G)/P

incomplete time steps ≤ CPL(G)

Theorem [Graham ’66].
Any greedy scheduler achieves

TP ≤ WORK(G)/P + CPL(G)

Start
time

Proc
1

Proc
2

Proc
3

0 A
1 B
2 C N
3 D N I
4 D N J
5 D N K
6 D Q L
7 E R M
8 F R O
9 G R P
10 H
11

COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)

Bounding the performance of Greedy
Schedulers

Combine lower and upper bounds to get
max(WORK(G)/P, CPL(G)) ≤ TP ≤ WORK(G)/P + CPL(G)

Corollary 1: Any greedy scheduler achieves execution time TP
that is within a factor of 2 of the optimal time (since max(a,b)
and (a+b) are within a factor of 2 of each other, for any a ≥ 0,b
≥ 0).
Corollary 2: Lower and upper bounds approach the same
value whenever

• There’s lots of parallelism, WORK(G)/CPL(G) >> P

• Or there’s little parallelism, WORK(G)/CPL(G) << P

12

COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)

Abstract Performance Metrics (Lab 1)
• Basic Idea

• Count operations of interest, as in big-O analysis, to evaluate parallel algorithms
• Abstraction ignores many overheads that occur on real systems

• Calls to doWork()
• Programmer inserts calls of the form, doWork(N), within a step to indicate

abstraction execution of N application-specific abstract operation
• e.g., in the Homework 1 programming assignment (Parallel Sort), we will

include one call to doWork(1) in each call to compareTo(), and ignore the
cost of everything else

• Abstract metrics are enabled by calling HjSystemProperty.abstractMetrics.set(true)
at start of program execution

• If an HJ program is executed with this option, abstract metrics can be printed at end
of program execution with calls to abstractMetrics().totalWork(),
abstractMetrics().criticalPathLength(), and abstractMetrics().idealParallelism()

13

COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)

Announcements & Reminders
• IMPORTANT:

—Watch video & read handout for topic 1.5 for next lecture on
Monday, Jan 14th

• HW1 was posted on the course web site (http://comp322.rice.edu)
on Jan 9th, and is due on Wednesday, Jan 23rd

• See course web site for all work assignments and due dates
• See Office Hours link on course web site for latest office hours

schedule.

14

http://comp322.rice.edu
https://wiki.rice.edu/confluence/display/PARPROG/322OfficeHours

