Lecture 8: Map/Reduce

Mack Joyner and Zoran Budimlić
{mjoyner, zoran}@rice.edu

http://comp322.rice.edu
Recap:
A binary function f is associative if $f(f(x,y),z) = f(x,f(y,z))$.
A binary function f is commutative if $f(x,y) = f(y,x)$.

Worksheet problems:
1) Claim: a Finish Accumulator (FA) can only be used with operators that are associative and commutative. Why? What can go wrong with accumulators if the operator is non-associative or non-commutative?
You may get different answers in different executions if the operator is non-associative or non-commutative e.g., an accumulator can be implemented using one “partial accumulator” per processor core.

2) For each of the following functions, indicate if it is associative and/or commutative.
 a) $f(x,y) = x+y$, for integers x, y, is associative and commutative
 b) $g(x,y) = (x+y)/2$, for integers x, y, is commutative but not associative
 c) $h(s1,s2) = \text{concat}(s1, s2)$ for strings $s1$, $s2$, e.g., $h(“ab”, ”cd”) = “abcd”$, is associative but not commutative
Map/Reduce: Streaming data requirements have skyrocketed

- AT&T processes roughly 168 petabytes per day in 2017 through its telecommunications network
- Google processed roughly 24 petabytes per day in 2009
- Facebook, Amazon, Twitter, etc, have comparable throughputs
- Two Sigma maintains over 100 teraflops of private computing power, continuously computing over 11 petabytes of quantitative data
- In comparison, the IBM Watson knowledge base stored roughly 4 terabytes of data when winning at Jeopardy
Parallelism enables processing of big data

- Continuously streaming data needs to be processed at least as fast as it is accumulated, or we will never catch up.
- The bottleneck in processing very large data sets is dominated by the speed of disk access.
- More processors accessing more disks enables faster processing.
MapReduce Pattern

- Apply **Map** function f to user supplied record of key-value pairs
- Compute set of intermediate key/value pairs
- Apply **Reduce** operation g to all values that share same key to combine derived data properly
 — Often produces smaller set of values
- User supplies Map and Reduce operations in functional model so that the system can parallelize them, and also re-execute them for fault tolerance
MapReduce: The Map Step

Input set of key-value pairs

Flattened intermediate set of key-value pairs

MapReduce: The Reduce Step

Intermediate key-value pairs

Key-value groups

Output key-value pairs

Map Reduce: Summary

- Input set is of the form \{ (k_1, v_1), \ldots, (k_n, v_n) \}, where (k_i, v_i) consists of a key, k_i, and a value, v_i.
 - Assume that the key and value objects are immutable, and that equality comparison is well defined on all key objects.
- Map function f generates sets of intermediate key-value pairs, \(f(k_i,v_i) = \{(k_1', v_1'), \ldots, (k_{m'}', v_{m'}')\} \). The k_{m'} keys can be different from k_i key in the map function.
 - Assume that a flatten operation is performed as a post-pass after the map operations, so as to avoid dealing with a set of sets.
- Reduce operation groups together intermediate key-value pairs, \{ (k', v_j') \} with the same k', and generates a reduced key-value pair, \((k', v'') \), for each such k', using reduce function g.
Google Uses MapReduce For …

- **Web crawl**: Find outgoing links from HTML documents, aggregate by target document

- **Google Earth**: Stitching overlapping satellite images to remove seams and to select high-quality imagery

- **Google Maps**: Processing all road segments on Earth and render map tile images that display segments
MapReduce Execution

Fine granularity tasks: many more map tasks than machines

Bucket sort to get same keys together

2000 servers =>
≈ 200,000 Map Tasks, ≈ 5,000 Reduce tasks
WordCount example

In: set of words
Out: set of (word,count) pairs

Algorithm:
1. For each in word W, emit $(W, 1)$ as a key-value pair (map step).
2. Group together all key-value pairs with the same key (reduce step).
3. Perform a sum reduction on all values with the same key (reduce step).

- All map operations in step 1 can execute in parallel with only local data accesses
- Step 2 may involve a major reshuffle of data as all key-value pairs with the same key are grouped together.
- Step 3 performs a standard reduction algorithm for all values with the same key, and in parallel for different keys.
PseudoCode for WordCount

1. `<String, Integer> map(String inKey, String inValue):
2. // inKey: document name
3. // inValue: document contents
4. for each word w in inValue:
5. emitIntermediate(w, 1) // Produce count of words
6.
7. `<Integer> reduce(String outKey, Iterator<Integer> values):
8. // outKey: a word
9. // values: a list of counts
10. Integer result = 0
11. for each v in values:
12. result += v // the value from map was an integer
13. emit(result)
Example Execution of WordCount Program

Distribute

Map 1:
- that: 1
- is: 1
- that: 2

Map 2:
- is: 1
- that: 2

Map 3:
- is: 2
- not: 2

Map 4:
- is: 2
- it: 2
- that: 1

Shuffle

Reduce 1:
- is: 6
- it: 2

Reduce 2:
- that: 2
- not: 2
- that: 5

Collect

is 6; it 2; not 2; that 5
Announcements & Reminders

- IMPORTANT:
 - Watch video & read handout for topic 2.5 and 2.6 for next lecture on Monday, Jan 28th

- HW2 is available and due by Wednesday, Feb 6th

- Quiz for Unit 1 (topics 1.1 - 1.5) is due by 11:59pm TODAY on Canvas

- See course web site for all work assignments and due dates

- Use Piazza (public or private posts, as appropriate) for all communications re. COMP 322

- See Office Hours link on course web site for latest office hours schedule.