Lecture 14: Iterative Averaging Revisited, SPMD pattern

Mack Joyner and Zoran Budimlić
{mjoyner, zoran}@rice.edu

http://comp322.rice.edu
1. What output will the following Java Streams code print?

```
C1 or C2
C2 or C1
```

The sorted() operation is a no-op if the printing is performed in parallel!

2. Which stream operation in this example could benefit from a parallel prefix sum implementation, and why?

The filter operation since parallel prefix can be used to compute the indices in the output array.
Recap: Parallel Filter Operation

Given an array `input`, produce an array `output` containing only elements such that \(f(elt) \) is true, i.e.,

\[
\text{output} = \text{input}.\text{parallelStream}.\text{filter}(f).\text{toArray}
\]

Example:

`input` [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]

\(f: \) is `elt` > 10

`output` [17, 11, 13, 19, 24]

Parallelizable?

— Finding elements for the output is easy
— But getting them in the right place seems hard
Recap: Parallel prefix to the rescue

1. Parallel map to compute a bit-vector for true elements (can use Java streams)

 \[
 \text{input} \quad [17, \ 4, \ 6, \ 8, \ 11, \ 5, \ 13, \ 19, \ 0, \ 24] \\
 \text{bits} \quad [1, \ 0, \ 0, \ 0, \ 1, \ 0, \ 1, \ 1, \ 0, \ 1] \\
 \]

2. Parallel-prefix sum on the bit-vector (not available in Java streams)

 \[
 \text{bitsum} \quad [1, \ 1, \ 1, \ 1, \ 2, \ 2, \ 3, \ 4, \ 4, \ 5] \\
 \]

3. Parallel map to produce the output (can use Java streams)

 \[
 \text{output} \quad [17, \ 11, \ 13, \ 19, \ 24] \\
 \]

 \[
 \text{output} = \text{new array of size bitsum[n-1]} \\
 \text{FORALL} (i=0; i < \text{input.length}; i++){ \\
 \quad \text{if(bits[i]==1)} \\
 \quad \quad \text{output[bitsum[i]-1] = input[i];} \\
 \}
 \]
One-Dimensional Iterative Averaging Revisited

• Initialize a one-dimensional array of (n+2) double’s with boundary conditions, myVal[0] = 0 and myVal[n+1] = 1.

• In each iteration, each interior element myVal[i] in 1..n is replaced by the average of its left and right neighbors.

 —Two separate arrays are used in each iteration, one for old values and the other for the new values

• After a sufficient number of iterations, we expect each element of the array to converge to myVal[i] = (myVal[i-1]+myVal[i+1])/2, for all i in 1..n

Illustration of an intermediate step for n = 8 (source: Figure 6.19 in Lin-Snyder book)
Iterative Averaging structure is akin to that of a Finite Difference solution to the One-Dimensional Heat Equation

- In the 1D heat equation, \(u(j,t) \) represents the temperature at position \(j \) in a 1D object at \(n^{th} \) time step (different use of “n” from our code)

- Recall that for a “properly-behaved” function \(f \), and a sufficiently small \(h \), we can approximate the first derivative of \(f \) as follows:

 \[
 f'(a) \approx \frac{f(a + h) - f(a)}{h}
 \]

- We can use this principle in both space and time to compute
 - \(u(j,n+1) = f(u(j-1,n), u(j,n), u(j+1,n)) \)

 for multiple time steps \(n \) until we reach a convergence with an acceptably small error between time steps

- These algorithms are also referred to as “stencil codes”

- See also: https://en.wikipedia.org/wiki/Heat_equation
HJ code for One-Dimensional Iterative Averaging using nested forseq-forall structure (Lecture 11)

1. double[] myVal=new double[n+2]; myVal[n+1] = 1;
2. double[] myNew=new double[n+2]; myNew[n+1] = myVal[n+1];
3. forseq(0, m-1, (iter) -> {
4. // Compute MyNew as function of input array MyVal
5. forall(1, n, (j) -> { // Create n tasks
6. myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;
7. }); // forall
8. // Swap myVal & myNew;
9. temp=myVal; myVal=myNew; myNew=temp;
10. // myNew becomes input array for next iteration
11. }); // for
Converting forseq-forall version (Slide 7) into a forall-forseq version with barriers

1. double[] gVal=new double[n+2]; gVal[n+1] = 1;
2. double[] gNew=new double[n+2];
3. forallPhased(1, n, (j) -> { // Create n tasks
 // Initialize myVal and myNew as local pointers
4. double[] myVal = gVal; double[] myNew = gNew;
5. forseq(0, m-1, (iter) -> {
6. // Compute MyNew as function of input array MyVal
7. myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;
8. next(); // Barrier before next iteration of iter loop
9. });
10. // Swap local pointers, myVal and myNew
11. double[] temp=myVal; myVal=myNew; myNew=temp;
12. // myNew becomes input array for next iteration
13. }); // forseq
14. }); // forall
General Approach for Iteration Grouping (Loop Chunking)

Without chunking:

```java
for (iter : [0:iterations-1]) {
    forall (j : [1:n])
        myNew[j] = (myVal[j-1] + myVal[j+1])/2;
    Swap myNew and myVal
}
```

With chunking (replace “forall” by “forall-for”):

```java
for (iter : [0:iterations-1]) {
    forall (g : [0:ng-1])
        for (j : myGroup(g,[1:n],ng)
            myNew[j] = (myVal[j-1] + myVal[j+1])/2;
        Swap myNew and myVal
```
Example: HJ code for One-Dimensional Iterative Averaging with Slide 7 code w/ chunking (Lecture 11)

1. double[] myVal=new double[n+2]; myVal[n+1] = 1;
2. double[] myNew=new double[n+2]; myNew[n+1] = myVal[n+1];
3. int nc = numWorkerThreads();
4. forseq(0, m-1, (iter) -> {
5. // Compute MyNew as function of input array MyVal
6. forallChunked(1, n, n/nc, (j) -> {
7. myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;
8. }); // forallChunked
9. temp=myVal; myVal=myNew; myNew=temp; // Swap myVal & myNew;
10. // myNew becomes input array for next iteration
11. }); // for
Barrier-based solution:

// Note that iter-loop is inserted between forall-g and for-j loops

forall (g : [0:ng-1])

for (iter : [0:iterations-1]) {
 for(j : myGroup(g, [1:n], ng))
 myNew[j] = (myVal[j-1] + myVal[j+1])/2;
 next; // Barrier
 Swap myNew and myVal
}

Also referred to as a “single program multiple data” (SPMD) pattern
Chunking the forall loop in Slide 8 — inner chunked loop goes inside forseq-iter loop

1. double[] gVal = new double[n+2]; gVal[n+1] = 1;
2. double[] gNew = new double[n+2];
3. HjRegion1D iterSpace = newRectangularRegion1D(1,n);
4. int nc = numWorkerThreads();
5. forallPhased(0, nc-1, (jj) -> {
 // Create nc tasks
 // Initialize myVal and myNew as local pointers
 double[] myVal = gVal; double[] myNew = gNew;
 forseq(0, m-1, (iter) -> {
 forseq(myGroup(jj, iterSpace, nc), (j) -> {
 // Compute MyNew as function of input array MyVal
 myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;
 }); // forseq
 next(); // Barrier before executing next iteration of iter loop
 }); // forseq
 // Swap local pointers, myVal and myNew
 double[] temp = myVal; myVal = myNew; myNew = temp;
 // myNew becomes input array for next iter
 }); // forall
Single Program Multiple Data (SPMD)

Basic idea

- Run the same code (program) on P workers
- Use the “rank” --- an ID ranging from 0 to (P-1) --- to determine what data is processed by which worker
 - Hence, “single-program” and “multiple-data”
 - Rank is equivalent to index in a top-level “forall (point[i] : [0:P-1])” loop
- Lower-level programming model than dynamic async/finish parallelism
 - Programmer’s code is essentially at the worker level (each forall iteration is like a worker), and work distribution is managed by programmer by using barriers and other synchronization constructs
 - Harder to program but can be more efficient for restricted classes of applications (e.g. for OneDimAveraging, but not for NQueens)
- Convenient for hardware platforms that are not amenable to efficient dynamic task parallelism
 - General-Purpose Graphics Processing Unit (GPGPU) accelerators
 - Distributed-memory parallel machines
Instead of async-finish, this SPMD version creates one task per worker, uses myGroup() to distribute work, and use barriers to synchronize workers.