
COMP 322: Fundamentals of Parallel Programming 

Lecture 30: Distributed Map-Reduce using Hadoop 
and Spark Frameworks  

Mack Joyner and Zoran Budimlić 
{mjoyner, zoran}@rice.edu 

http://comp322.rice.edu 

COMP 322                             Lecture 30                
March 2019 

http://comp322.rice.edu


Worksheet #29 solution: MPI Gather

1.   MPI.Init(args) ;
2.   int myrank = MPI.COMM_WORLD.Rank() ;
3.   int numProcs = MPI.COMM_WORLD.Size() ;
4.   int size = ...;
5.   int[] sendbuf = new int[size];
6.   int[] recvbuf = new int[???];
7.   . . . // Each process initializes sendbuf
8.   MPI.COMM_WORLD.Gather(sendbuf, 0, size, MPI.INT, 
9.                         recvbuf, 0, size, MPI.INT, 
10.                         0 /*root*/);
11.   . . .
12.   MPI.Finalize();

2 COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)

Indicate what value should be 
provided instead of ??? in line 6 to 
minimize space, and how it should 
depend on myrank.

Solution: myrank == 0 ? (size * numProcs) : 0 



Organization of a Distributed-Memory 
Multiprocessor (Recap)

Figure (a) 
• Host node (Pc) connected to a cluster of processor nodes (P0 … Pm) 
• Processors P0 … Pm communicate via an interconnection network which could be 

standard TCP/IP (e.g., for Map-Reduce) or specialized for high performance 
communication (e.g., for scientific computing) 

Figure (b) 
• Each processor node consists of a processor, memory, and a Network Interface Card 

(NIC) connected to a router node (R) in the interconnect           

3 COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)

In MPI, processes communicate by sending messages to each other.  Distributed 
Map-Reduce offers an alternative approach for programming distributed-memory 
multiprocessors.



MapReduce Pattern (Recap from Lecture 8)

• Apply Map function f to user supplied record of key-
value pairs 

• Compute set of intermediate key/value pairs 
• Apply Reduce operation g to all values that share same 

key to combine derived data properly 
—Often produces smaller set of values 

• User supplies Map and Reduce operations in functional 
model so that the system can parallelize them, and also 
re-execute them for fault tolerance 

• Distributed Map-Reduce frameworks (Hadoop, Spark) 
support the Map-Reduce pattern (with extensions) on a 
distributed-memory multiprocessor

4
COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)



Distributed MapReduce Execution

Fine granularity 
tasks: many more 
map tasks than 
machines

E.g. 2000 servers =>  
≈ 200,000 Map Tasks,  
≈ 5,000 Reduce tasks

Bucket sort 
to get same keys 
together

5
COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)



Apache Hadoop Project
• Hadoop: an open-source software framework that supports data-intensive distributed applications, 

licensed under the Apache v2 license. 

• Goals / Requirements:  
—Abstract and facilitate the storage and processing of large and/or rapidly growing data sets 
—Simple programming models 
—High scalability and availability 
—Fault-tolerance 
—Move computation rather than data 

• Distributed design, with some centralization 
—Main nodes of cluster are where most of the computational power and storage of the system 

lies 
—Main nodes run TaskTracker to accept and reply to MapReduce tasks, and also DataNode to 

store needed blocks closely as possible 
—Central control node runs NameNode to keep track of HDFS directories & files, and JobTracker 

to dispatch compute tasks to TaskTracker 

• Written in Java, also supports Python and Ruby 

• Acknowledgment: slides on Hadoop from UCI CS 237 course by Nalini Venkatasubramanian

6 COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)

http://www.ics.uci.edu/~cs237/lectures/cloudvirtualization/Hadoop.pptx


Hadoop’s Architecture
• NN = Name Node 

• DN = Data Node 

• TT = Task Tracker 

• Acknowledgment: slides on Hadoop from UCI CS 237 course by Nalini Venkatasubramanian

7 COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)

http://www.ics.uci.edu/~cs237/lectures/cloudvirtualization/Hadoop.pptx


Spark and Iterative Map/Reduce

• Apache Spark: General purpose functional 
programming over a cluster 
— Caches results of map/reduce operations in memory 

so they can be used on subsequent iterations 
— Tends to be 10-100 times faster than Hadoop for 

many applications

8 COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)



Apache Spark Project
• Spark is a data parallel processing framework, which means it will 

execute tasks as close to where the data lives as possible (i.e. 
minimize data transfer). 

• Spark follows a paradigm of keeping as much data in-memory 
and spilling excess to disk rather than pulling data from disk 
when needed.

9 COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)

• Spark decomposes your 
program into tasks and handles 
dispatching and scheduling of 
these tasks on worker nodes in 
your cluster. 

• Spark revolves around the 
concept of a resilient 
distributed datasets (RDD).



Resilient Distributed Datasets
• The key construct in Spark is the 

Resilient Distributed Dataset (RDD) 
— RDDs can be though of as a 

collection of key-value pairs 

• An RDD is a giant immutable 
collection, distributed in a 
redundant way over all the 
machines in a cluster 

• The types of the elements in the 
RDD can be arbitrary elements 

• If the elements are pairs, then the 
RDD acts like a table 

• Computations on an RDD (including 
Map/Reduce) can be expressed as 
functional programming operations

10 COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)



Working with RDDs
• There are two kinds of operations one can perform over an RDD. 

• Transformations: Operations like map, filter, join etc. that just 
return another RDD. They are lazy operations.

11 COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)

• Actions: These are 
operations that actually 
produce results like 
count, collect, save 
etc. These operations 
don't return an RDD. 

• Similar to intermediate 
and terminal operations 
in Java 8 Streams.



Advantages of Immutability
• The distributed nature of RDDs is not evident in the 

programming model. 

• RDD elements can be replicated for fault tolerance. 

• Purely functional operations can be easily defined on 
RDDs 

• Because RDDs are immutable, all the operations from 
purely functional programming can be applied and 
parallelized in a straightforward way. 

• The runtime has great flexibility in scheduling operations 
on RDDs and executing them in parallel on partitions. 

• Partitions of RDDs can be recomputed from their lineage.

12 COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)



Word Count in Apache Spark
JavaRDD<String> file = context.textFile(inputFile);

JavaPairRDD<String, Integer> counter = 
  file.flatMap(s -> Arrays.asList(s.split(" ")))
      .mapToPair(s -> new Tuple2<>(s, 1))
      .reduceByKey((a, b) -> a + b);

counter.collect().forEach(System.out::println);

// Definition of “flatMap” 
// x.flatMap(f) = x.map(f).flatten() 

// Definition of “reduceByKey” 
// x.reduceByKey(f) = x.groupByKey()  
         .map(xs -> xs.reduce(f))

13 COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)



Word Count in Apache Spark
["this is a line", 
 "this is another line",
 "this is yet another line"]
.map(s -> Arrays.asList(s.split(" ")))
.flatten()
—-> 
[["this", "is", "a", "line"],
 ["this", "is", "another", "line"],
 ["this", "is", "yet", "another", "line"]]
.flatten()
—-> 
["this", "is", "a", "line", "this", "is",
 "another", "line", "this", "is", "yet",
 "another", "line"]

14 COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)



Word Count in Apache Spark
["this", "is", "a", "line", "this", "is",
 "another", "line", "this", "is", "yet",
 "another", "line"]
.map(s -> new Tuple2<>(s, 1))

——>

[["this",1], ["is",1], ["a",1], ["line",1],   
 ["this",1], ["is",1], ["another",1], 
 ["line",1], ["this",1], ["is",1], 
 ["yet",1], ["another",1], ["line",1]]

15 COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)



Word Count in Apache Spark
[["this",1], ["is",1], ["a",1], ["line",1],   
 ["this",1], ["is",1], ["another",1], 
 ["line",1], ["this",1], ["is",1], 
 ["yet",1],["another",1], ["line",1]]
.groupByKey().map(xs -> xs.reduce(
                          (a,b) -> a + b))
——>
[["this", [1,1,1]],
 ["is", [1,1,1]],
 ["a", [1]],
 ["line", [1,1,1]], 
 ["another", [1,1]], 
 ["yet", [1]]].map(xs -> xs.reduce((a,b) -> a + b))

16 COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)



Word Count in Apache Spark
[["this", [1,1,1]],
 ["is", [1,1,1]],
 ["a", [1]],
 ["line", [1,1,1]], 
 ["another", [1,1]], 
 ["yet", [1]]].map(xs -> xs.reduce(
                             (a,b) -> a + b)
——>
[["this", [1,1,1]].reduce((a,b) -> a + b),
 ["is", [1,1,1]].reduce((a,b) -> a + b),
 ["a", [1]].reduce((a,b) -> a + b),
 ["line", [1,1,1]].reduce((a,b) -> a + b), 
 ["another", [1,1]].reduce((a,b) -> a + b), 
 ["yet", [1]].reduce((a,b) -> a + b))]

17 COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)



Word Count in Apache Spark
[["this", [1,1,1]].reduce((a,b) -> a + b),
 ["is", [1,1,1]].reduce((a,b) -> a + b),
 ["a", [1]].reduce((a,b) -> a + b),
 ["line", [1,1,1]].reduce((a,b) -> a + b), 
 ["another", [1,1]].reduce((a,b) -> a + b), 
 ["yet", [1]].reduce((a,b) -> a + b))]

——>

[["this", 3], ["is", 3], ["a", 1], 
 ["line", 3], ["another", 2], ["yet", 1]]

18 COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)


