
COMP 322: Fundamentals of Parallel Programming

Lecture 37: Algorithms based on Parallel Prefix
(Scan) operations, cont.

Mack Joyner and Zoran Budimlić
{mjoyner, zoran}@rice.edu

Acknowledgements:
• Book chapter on “Prefix Sums and Their Applications”, Guy E. Blelloch, CMU
• Slides on “Parallel prefix adders”, Kostas Vitoroulis, Concordia University

http://comp322.rice.edu

COMP 322 Lecture 37
April 2019

http://rice.edu
http://www.cs.cmu.edu/~guyb/papers/Ble93.pdf
http://users.encs.concordia.ca/~asim/COEN_6501/Lecture_Notes/Parallel%20prefix%20adders%20presentation.pdf
http://comp322.rice.edu

 [101 111 011 001 100 010 111 010]

1.A = [5 7 3 1 4 2 7 2]
2.A⟨0⟩ = [1 1 1 1 0 0 1 0] //lowest bit
3.A←split(A,A⟨0⟩) = [4 2 2 5 7 3 1 7]
4.A⟨1⟩ = [0 1 1 0 1 1 0 1] // middle bit
5.A←split(A,A⟨1⟩) = [4 5 1 2 2 7 3 7]
6.A⟨2⟩ = [1 1 0 0 0 1 0 1] // highest bit
7.A←split(A,A⟨2⟩) = [1 2 2 3 4 5 7 7]

Worksheet #36 problem statement:
Parallelizing the Split step in Radix Sort

2 COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)

The Radix Sort algorithm loops over the bits in the binary representation of the keys,
starting at the lowest bit, and executes a split operation for each bit as shown below.
The split operation packs the keys with a 0 in the corresponding bit to the bottom of a
vector, and packs the keys with a 1 to the top of the same vector. It maintains the order
within both groups. The sort works because each split operation sorts the keys with
respect to the current bit and maintains the sorted order of all the lower bits. Your task
is to show how the split operation can be performed in parallel using scan, reverse,
not operations, and to explain your answer.

Worksheet #36 solution:
Parallelizing the Split step in Radix Sort

3 COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)

1.4 Recurrence Equations 47

procedure split(A, Flags)

I-down ← +-prescan(not(Flags))

I-up ← n - +-scan(reverse-order(Flags))

in parallel for each index i
if (Flags[i])
Index[i] ← I-up[i]

else

Index[i] ← I-down[i]
result ← permute(A, Index)

A = [5 7 3 1 4 2 7 2]
Flags = [1 1 1 1 0 0 1 0]

I-down = [0 0 0 0 0 1 2 2]
I-up = [3 4 5 6 6 6 7 7]
Index = [3 4 5 6 0 1 7 2]

permute(A, Index) = [4 2 2 5 7 3 1 7]

FIGURE 1.9

The split operation packs the elements with a 0 in the corresponding flag
position to the bottom of a vector, and packs the elements with a 1 to the
top of the same vector. The permute writes each element of A to the index
specified by the corresponding position in Index.

PRAM.2 If we assume that n keys are each O(lg n) bits long, then the overall
algorithm runs in time:

O((
n

p
+ lg p) lg n) = O(

n

p
lg n + lg n lg p).

1.4
Recurrence Equations

This section shows how various recurrence equations can be solved using
the scan operation. A recurrence is a set of equations of the form

xi = fi(xi−1, xi−2, · · · , xi−m), m ≤ i < n (1.3)

2On an CREW PRAM we can use the scan described in Chapter 4 to get a time of O(n/p+

lg p/ lg lg p).

7 87

prescan(+, not(Flags)) // prescan = exclusive prefix sum
rev(n - scan(+, rev(Flags)) // rev = reverse

Parallelizing Prefix Sum (Lecture 13)
Observation: each prefix sum can be decomposed into reusable terms of

power-of-2-size e.g.

Approach:

• Combine reduction tree idea from Parallel Array Sum with partial sum idea
from Sequential Prefix Sum

• Use an “upward sweep” to perform parallel reduction, while storing partial
sum terms in tree nodes

• Use a “downward sweep” to compute prefix sums while reusing partial sum
terms stored in upward sweep

4 COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)

Upward sweep is just like Parallel Reduction, except that partial sums
are also stored along the way

1. Receive values from left and right children
2. Compute left+right and store in box
3. Send left+right value to parent 3

0

not(Flags)

Parallel Pre-scan Sum: Upward Sweep

5 COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)

0

0
3

2 1

3
0

0

0

3

2 1

0 0 0 0 1 1 0 1

1. Receive value from parent (root receives 0)
2. Send parent’s value to LEFT child (prefix sum for elements to left of left

child’s subtree)
3. Send parent’s value+ left child’s box value to RIGHT child (prefix sum for

elements to left of right child’s subtree)
4. Add A[i] to get inclusive prefix sum

prescan (I-down)

Parallel Pre-scan Sum: Downward Sweep

6 COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)

0

0

0
3

2 1

3

0
0 0

0

0 0 0

0 0 0 01 1

0 1 2

2

2
not(Flags)

5

0

rev(Flags)

Parallel Scan Sum: Upward Sweep

7 COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)

1

1
5

2 2

4
1

1

0

4

2 2

0 1 0 0 1 1 1 1

prescan

Parallel Scan Sum: Downward Sweep

8 COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)

0

1

1
5

2 2

4

scan

0
1 1

1

0 1 1

0 1 0 11 1

1 2 3

3

4

rev(Flags)

0 1 1 1 2 3 4 5
n - scan 8 7 7 7 6 5 4 3

rev(n - scan): I-Up 3 4 5 6 7 7 7 8

Worksheet #36 solution:
Parallelizing the Split step in Radix Sort

9 COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)

1.4 Recurrence Equations 47

procedure split(A, Flags)

I-down ← +-prescan(not(Flags))

I-up ← n - +-scan(reverse-order(Flags))

in parallel for each index i
if (Flags[i])
Index[i] ← I-up[i]

else

Index[i] ← I-down[i]
result ← permute(A, Index)

A = [5 7 3 1 4 2 7 2]
Flags = [1 1 1 1 0 0 1 0]

I-down = [0 0 0 0 0 1 2 2]
I-up = [3 4 5 6 6 6 7 7]
Index = [3 4 5 6 0 1 7 2]

permute(A, Index) = [4 2 2 5 7 3 1 7]

FIGURE 1.9

The split operation packs the elements with a 0 in the corresponding flag
position to the bottom of a vector, and packs the elements with a 1 to the
top of the same vector. The permute writes each element of A to the index
specified by the corresponding position in Index.

PRAM.2 If we assume that n keys are each O(lg n) bits long, then the overall
algorithm runs in time:

O((
n

p
+ lg p) lg n) = O(

n

p
lg n + lg n lg p).

1.4
Recurrence Equations

This section shows how various recurrence equations can be solved using
the scan operation. A recurrence is a set of equations of the form

xi = fi(xi−1, xi−2, · · · , xi−m), m ≤ i < n (1.3)

2On an CREW PRAM we can use the scan described in Chapter 4 to get a time of O(n/p+

lg p/ lg lg p).

7 87

prescan(+, not(Flags)) // prescan = exclusive prefix sum
rev(n - scan(+, rev(Flags)) // rev = reverse

COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)
10

Binary Addition

Each stage ii adds bits ai, bi, ci-1 and produces bits si, ci
The following hold:

y3 y2 y1

x0x1x2x3
+

y0

This is the pen and paper addition of
two 4-bit binary numbers x and y.
c represents the generated carries.
s represents the produced sum bits.

A stage of the addition is the set of
x and y bits being used to produce
the appropriate sum and carry bits.
For example the highlighted bits x2,
y2 constitute stage 2 which
generates carry c2 and sum s2 .

s0s1s2s3

c0c1c2c3

s4

ai bi ci Comment: Formal definition:

0 0 0 The stage “kills” an incoming carry. “Kill” bit:

“Propagate” bit:

“Generate” bit:

0 1 ci-1 The stage “propagates” an incoming carry

1 0 ci-1 The stage “propagates” an incoming carry

1 1 1 The stage “generates” a carry out

iii yxp ⊕=

iii yxk +=

iii yxg •=

COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)
11

Binary Addition

The carry ci generated by a stage ii is given by the equation:

This equation can be simplified to:

The “ai” term in the equation being the “alive” bit.
The later form of the equation uses an OR gate instead of an XOR which is a more efficient gate when implemented
in CMOS technology. Note that:

Where ki is the “kill” bit defined in the table above.

ai bi ci Comment: Formal definition:

0 0 0 The stage “kills” an incoming carry. “Kill” bit:

“Propagate” bit:

“Generate” bit:

0 1 ci-1 The stage “propagates” an incoming carry

1 0 ci-1 The stage “propagates” an incoming carry

1 1 1 The stage “generates” a carry out

() 11 −− ⋅⊕+⋅=⋅+= iiiiiiiii cyxyxcpgc

iii yxp ⊕=

iii yxk +=

iii yxg •=

() 11 −− ⋅+=⋅++⋅= iiiiiiiii cagcyxyxc

ii ka =

COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)

Binary addition as a prefix sum problem.

()() ()0011 ,,, pgpgpg nnnn K−−

� We define a new operator: “ ° ”
� Input is a vector of pairs of ‘propagate’ and ‘generate’ bits:

� Output is a new vector of pairs:

� Each pair of the output vector is calculated by the
following definition:

),(),(
:

),(),(),(

0000

11

pgPG
Where

PGpgPG iiiiii

=

= −−o

()() ()0011 ,,, PGPGPG nnnn K−−

operationsANDORthebeingwith
ppgpgpgpg yxyxxyyxx

,,

),(),(),(

⋅+

⋅⋅+=o

12

Indicates
that “o” is associative and
amenable to parallel prefix

algorithm

COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)
13

1973: Kogge-Stone adder

c1

(p2, g2)(p3, g3)(p4, g4)(p5, g5)(p6, g6)(p7, g7)(p8, g8)

c2c3c4c5c6c7c8

(p1, g1)

� The Kogge-Stone adder has:
� Low depth
� High node count (implies more area).
� Minimal fan-out of 1 at each node (implies faster performance).

COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)
14

Summary (2/3)
� A parallel prefix adder can be seen as a 3-stage process:

� There exist various architectures for the carry calculation part.
� Trade-offs in these architectures involve the

� area of the adder
� its depth
� the fan-out of the nodes
� the overall wiring network.

Pre-calculation of Pi, Gi terms

Calculation of the carries.

Simple adder to generate the sum

Parallel Algorithms, Computation
Graphs, and Circuits

• Today’s lecture shows that parallel algorithms, computation graphs, and
circuits represent different approaches to parallel computational thinking

• A parallel algorithm unfolds into a computation graph when executing

• A circuit represents an “unrolled” computation graph in hardware e.g.,
see bitonic sorting network in https://en.wikipedia.org/wiki/Bitonic_sorter

15 COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)

https://en.wikipedia.org/wiki/Bitonic_sorter

COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)

Announcements & Reminders
• HW5 is due Friday, April 19th with automatic extension until

Sunday, April 21st
• You may use any remaining slip days after the extension

• Optional quiz available for Unit 10
• Also due April 19th
• We will pick the best 9 of your 10 quiz scores

• No lab on Thursday
• April 19th: Course review (scope of Exam 2) in class

16

Worksheet #37:
Creating a Circuit for Parallel Prefix Sums

17 COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)

Name: ___________________ Netid: ___________________

Assume that you have a full adder cell, ⊕, that can be used as a building block for
circuits (no need to worry about carry’s). Create a circuit that generates the prefix
sums for 1, … 6, by adding at most 5 more cells to the sketch shown below, while
ensuring that the CPL is at most 3 cells long. Assume that you can duplicate any value
(fan-out) to whatever degree you like without any penalty.

1 2 3 4 5 6 (Inputs)

 ⊕
 ⊕

1 3 6 10 15 21 (Outputs)

